
Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Volume-55, No.1(XI) 2021 47

STATIC AND DYNAMIC ROUTING PROTOCOLS FOR WIRELESS NETWORKS: AN

EFFECTIVE APPROACH

Dr. R. Jayaprakash, Assistant Professor, Department of Computer Science,

Nallamuthu Gounder Mahalingam College, Pollachi, Coimbatore:: jpinfosoft@gmail.com

ABSTRACT

The routing protocol area allows you to check the optimum path for digital communication

between network nodes. Routers use them to share routing information with alternative routers to

with dynamism build global routing tables. Link-state protocols don't “route by rumor.” Instead,

routers send updates advertising the state of their links (a link may be a directly-connected network).

All routers apprehend the state of all existing links among their locus, and store this info in an

exceedingly topology table. A distance-vector routing protocol begins by advertising directly-

connected networks to its neighbors. These updates area unit sent often (RIP – each thirty seconds;

IGRP – each ninety seconds). Neighbors can add the routes from these updates to their own routing

tables. Every neighbor trusts this information fully, and can forward their full routing table

(connected and learned routes) to each alternative neighbor. Thus, routers absolutely and blindly

think about neighbors for route info, a plan referred to as routing by rumor.

Keywords: RIP, IGRP, Router, IGP, EGP, and Links.

I. INTRODUCTION

The zone unit of routing protocols used to check the most advantageous channel for electronic

communication between network nodes. Routers use them to contribute to routing data with

alternative routers to dynamically build international routing tables. The routing protocols area unit

engaged once your organization’s network grows to the purpose wherever static routes area unit

unmanageable. Fashionable enterprise networks would like dynamic routing tables that mechanically

change if there are a unit any traffic or topology changes.

II. DIFFERENT TYPES OF ROUTING PROTOCOLS

There square measure 2 major categories of routing protocols: Exterior entryway Protocol (EGP) and

Interior entryway Protocol (IGP). EGP is employed to exchange routing info between autonomous

systems. as an example, EGP is employed in knowledge transfers between ISPs (Internet Service

Providers) to ISPs or between autonomous systems to ISPs. Whereas, IGP (Interior entryway

Protocol) is employed for exchanging routing info between routers at intervals associate degree

autonomous system, like knowledge transfers at intervals your organization’s native space network

(LAN). IGP are often additional classified into 2 categories: Distance-Vector and Link-State Routing

Protocols.

Distance-Vector Routing Protocols, routers communicate with neighboring routers, sporadically

informing them regarding topology changes.

Whereas in link-state routing protocol, routers produce a roadmap of however they're connected

within the network. By calculative the simplest path from that router to each potential destination

within the network, link state routing protocols type the routing table. RIP (Routing info Protocol),

RIPv2, IGRP (Interior Gateway Routing Protocol), and EIGRP (Enhanced IGRP) square measure a

part of Distance-Vector Routing Protocols. However, OSPF (Open Shortest Path First) and IS-IS

(Intermediate System to Intermediate System) square measure a part of Link-State Routing

Protocols.

Table 1: Nature of Routing Protocols

Nature of Routing Protocols

Exterior Gateway

Protocols (EGP)
Interior Gateway Protocols (IGP)

Border Gateway

Protocol (BGP)

Distance – Vector Link – State

RIP IGRP EIGRP OSPF IS – IS

mailto:jpinfosoft@gmail.com

Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Volume-55, No.1(XI) 2021 48

III. STATIC VS. DYNAMIC ROUTING

There are two basic methods of building a routing table:

• Static Routing - Stable

• Dynamic Routing – Occurrence of change at run time

A static (stable) routing table is formed, maintained, and updated by a network administrator,

manually. A static route each to each network should be organized on every router for full property.

This provides a granular level of management over routing, however quickly becomes impractical on

massive networks. Routers won't share static routes with one another, so reducing CPU/RAM

overhead and saving information measure. However, static routing isn't fault-tolerant, as any

modification to the routing infrastructure (such as a link happening, or a replacement network added)

needs manual intervention. Routers operational during a strictly static setting cannot seamlessly

select a much better route if a link becomes unavailable. Static routes have Associate Degree body

Distance (AD) of one, and so square measure continuously most well-liked over dynamic routes,

unless the default AD is modified. A static route with associate degree adjusted AD is termed a

floating static route, and is roofed in bigger detail in another guide.

A dynamic (change) routing table is formed, maintained, and updated by a routing protocol running

on the router. Samples of routing protocols embody RIP (Routing information Protocol), EIGRP

(Enhanced Interior Gate-way Routing Protocol), and OSPF (Open Shortest Path First). Specific

dynamic routing protocols square measure lined in nice detail in different guides. Routers do share

dynamic routing info with one another that will increase processor, RAM, and information measure

usage. However, routing protocols square measure capable of dynamically selecting a special (or

better) path once there's a modification to the routing transportation. Don’t confuse routing protocols

with routed protocols:

1. A routed protocol may be a Layer three protocol that applies logical addresses to devices and

routes information between one or a lot of networks (such as net Protocol)

2. A routing protocol dynamically builds the network, topology, and next hop info in routing

tables (such as RIP, EIGRP, etc.)

The following briefly outlines the pros and cons of static routing:

Static Routing- Advantages

• Minimal CPU/Memory overhead

• No bandwidth overhead (updates are not shared among routers)

• Granular control on how traffic is routed

Static Routing- Disadvantages

• Infrastructure changes must be manually adjusted

• No “dynamic” fault tolerance if a link goes down

• Impractical on large network

The following briefly outlines the advantages and disadvantages of dynamic routing:

Advantages of Dynamic Routing

• Simpler to configure on larger networks

• Will dynamically choose a different (or better) route if a link goes down

• Ability to load balance between multiple links

Disadvantages of Dynamic Routing

• Updates are shared between routers, thus consuming bandwidth

• Routing protocols put additional load on router CPU/RAM

• The choice of the “best route” is in the hands of the routing protocol, and not the network

administrator

DYNAMIC ROUTING CATEGORIES

There are two distinct types of dynamic routing protocols:

• Distance-vector protocols

• Link-state protocols

Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Volume-55, No.1(XI) 2021 49

Examples of distance-vector protocols include RIP and IGRP. Examples of link-state

protocols include OSPF and IS-IS. EIGRP exhibits both distance-vector and link-state

characteristics, and is considered an amalgam protocol.

IV. LINK-STATE ROUTING PROTOCOLS

Link-state routing protocols were developed to alleviate the convergence and loop issues of

distance-vector protocols. Link-state protocols maintain three separate tables:

• Neighbor table – contains a list of all neighbors, and the interface each neighbor is connected

off of. Neighbors are formed by sending packets.

• Topology table – otherwise known as the “link-state” table, contains a map of all links within

an area, including each link’s status.

• Shortest-Path table – contains the finest routes to each particular destination (otherwise known

as the “routing” table”)

Link-state protocols do not “route by rumor.” Instead, routers send updates advertising the state of

their links (a link is a directly-connected network). All routers know the state of all existing links

within their region, and store this information in a topology table. All routers within an area have

indistinguishable topology tables. Table 2 displays the characteristics of link-state protocols.

Table 2: Link-State Protocol Summary

Individuality Explanation

Periodic updates
Only when changes occur. OSPF, for example, also sends all

summary information every 30 minutes by default.

Broadcast

updates

Only devices running routing algorithms listen to these updates.

Updates are sent to a multicast address.

Database
A database contains all topological information from which an IP

routing table is assembled.

Algorithm Dijkstra Algorithm for OSPF.

Convergence Updates are faster and convergence times are reduced.

CPU/memory
Higher CPU and memory requirements to maintain link-state

databases.

Examples OSPF and IS-IS.

Link-state protocols don't “route by rumor.” Instead, routers send updates advertising the state of

their links (a link may be a directly-connected network). All routers grasp the state of all existing

links at intervals their region, and store this data in an exceedingly topology table. All routers at

intervals a neighborhood have indistinguishable topology tables. Table 2 displays the characteristics

of link-state protocols.

The best route to every link (network) is keep within the routing (or shortest path) table. If the state

of a link changes, like a router interface failing, an advert containing solely this link-state

modification are going to be sent to any or all routers at intervals that space. Every router can change

its topology table consequently, and can calculate a replacement best route if needed. By maintaining

uniform topologies table among all routers at intervals a neighborhood. Link-state protocols will

converge terribly quickly and square measure un-attackable to routing loops. Additionally, as a result

of updates square measure sent solely throughout a link-state modification, and contain solely the

modification (and not the total table), link-state protocols square measure less information measure

intensive than distance-vector protocols. However, the 3 link-state tables utilize a lot of RAM and

electronic equipment on the router itself. Link-state protocols utilize some variety of price,

sometimes supported information measure, to calculate a route’s metric. The Dijkstra formula is

employed to see the shortest path.

Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Volume-55, No.1(XI) 2021 50

DIJKSTRA'S ALGORITHM

The reason why BFS doesn't work for weighted graphs is extremely easy we will not guarantee that

the vertex at the front of the queue is that the vertex nearest to s. it's definitely the nearest in terms of

the amount of edges wont to reach it, however not in terms of edge weights. However we will fix this

simply. Rather than employing a plain queue, able to use a priority queue during which vertices are

sorted by their increasing distt[] price. Then at every iteration, we are going to decide the vertex, u,

with smallest distt[u] price and decision relax(u, v) on all of its neighbors, v. the sole distinction is

that currently we have a tendency to add the burden of the sting (u, v) to our distance rather than

simply adding one.

bool relax(int u, int v)

{

int newDistt = distt[u] + weight[u][v];

if(distt[v] <= newDistt) return false;

distt[v] = newDistt;

return true;

}

The proof of correctness is strictly constant as for BFS ¬ constant loop invariant holds. However, the

rule solely works as long as we have a tendency to don't have edges with negative weights.

Otherwise, there's no guarantee that after we decide u because the nearest vertex, distt[v] for a few

alternative vertex v won't become smaller than distt[u] at it slow within the future.

Algorithm1:

O(n
2
+(m+n)log(n)) Dijkstra’s

int graph[128][128]; // -1 means “no edge”

int n; // number of vertices (at most 128)

 int distt[128];

//Compares 2 vertices first by distance and then by vertex number

struct ltDistt {

Bool operator() (int u,int v) const {

return make_pair(distt[u],u)<make_pair(distt[v],v);

}

}

void dijkstra(int s)

{

for(int i=0;i<n;i++)distt[i]=INT_MAX;

distt[s]=0;

set<int,ltDistt>q;

q.insert(s);

while(!q.empty()) {

int u=
 *

q.begin();// like u=q.front()

q.erase(q.begin());// like q.pop()

for(int v=0;v<n;v++)

if(graph[u][v]! = -1) {

Int newDistt=distt[u]+graph[u][v];

If(newDistt < distt[v]) //relaxation

{

If(q.count(v))q.erase(v);

Distt[v] = newDistt;

q.insert(v));

}

}

Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Volume-55, No.1(XI) 2021 51

}

}

There square measure multiple ways that to implement Dijkstra's rule. the most challenge is

maintaining a priority queue of vertices that has three operations –inserting new vertices to the

queue, removing the vertex with smallest distt[], and decreasing the distt[] worth of some vertex

throughout relaxation. We are able to use a group to represent the queue. Within the following

example, assume that graph[i][j] contains the burden of the sting (i, j).

The period is n*log(n) for removing n vertices from the queue, and m*log(n) for inserting into and

change the queue for every edge, and n*n for running the 'for(v)'loop for every vertex u. we are able

to avoid the quadratic value by mistreatment Associate in Nursing contiguity list, for a total of

O((m+n)log(n)). In our own way to implement the priority queue is to scan the distt[] array when to

seek out the closer vertex, u.

Algorithm 2: O(n
^
2) Dijkstra’s

int graph[128][128],n;

int distt[128];

bool done[128];

void dijkstra(int s)

{

for(int i=0;i<n;i++)

{

distt[i] = INT_MAX;

done[i] = false;

}

Distt[s] = 0;

while(true)

{

//find the vertex with the smallest distt[]value

int u = -1,bestDist = INT_MAX;

for(int i=0;i<n;i++)if(!done[i]&&distt[i]<bestDist)

{

u = i;

bestDist = distt[i];

}

if(bestDist == INT_MAX)

break;

//relax neighbouring edges

for(int v=0;v<n;v++)

if(!done [v]&& graph[u][v]! = -1)

{

If(distt[v]>distt[u]+graph[u][v])

distt[v]=distt[u]+graph[u][v];

}

Done[u] = true;

}

}

We have to introduce a brand new array, done (). We have a tendency to may additionally decision it

"black[]" as a result of its true for those vertices that have left the queue. First, we have a tendency to

initialize done to false and dist () to eternity. Within the most loop, we have a tendency to scan the

distt () array to search out the vertex, u, with negligible distt() worth that's not black however. If we

Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Volume-55, No.1(XI) 2021 52

won't realize one, we have a tendency to break from the loop. Otherwise, we have a tendency to relax

all of U's adjacent edges. This apparently low-tech methodology is admittedly pretty clever in terms

of period. the most while() loop executes at the most n times as a result of at the tip we have a

tendency to perpetually set done[u] to true for a few u, and that we will solely do this n times before

they're all true. Within the loop, we have a tendency to do O(n) add 2 straightforward loops. The

entire is O(n2) , that is quicker than the primary deed as long because the graph is fairly dense (m>n

a pair of /log(n)). this can be if we have a tendency to do use associate nearness list within the initial

implementation; otherwise, the second can nearly always be faster). Dijkstra's formula is incredibly

quick, however it suffers from its inability to manage negative edge weights. Having negative edges

in a {very} graph may additionally introduce negative weight cycles that create a re-think the very

definition of "shortest path". as luck would have it, there's associate formula that's additional tolerant

to having negative edges –the attendant Ford formula.

V. DISTANCE-VECTOR ROUTING PROTOCOLS

All distance-vector routing protocols share several key characteristics:

• Periodic updates of the full routing table are sent to routing neighbors.

• Distance-vector protocols suffer from slow convergence, and are highly susceptible to loops.

• Some form of distance is used to analyze a route’s metric.

• The Bellman-Ford algorithm is used to establish the shortest path.

A distance-vector routing protocol begins by advertising directly-connected networks to its

neighbors. These updates area unit sent frequently (RIP – each thirty seconds; IGRP – each ninety

seconds). Neighbors can add the routes from these updates to their own routing tables. Every

neighbor trusts this so as fully, and can forward their full routing table (connected and learned

routes) to each alternative neighbor. Thus, routers absolutely (and blindly) suppose neighbors for

route data, an idea referred to as routing by rumor. There is a unit many disadvantages to the current

behavior. as a result of routing data is propagated from neighbor to neighbor via periodic updates,

distance-vector protocols suffer from slow convergence. This, additionally to blind religion of

neighbor updates, ends up in distance-vector protocols being extremely vulnerable to routing loops.

Table one describes the individuality of distance vector protocols. Distance-vector protocols utilize

some sort of distance to calculate a route’s metric. RIP uses hop count as its distance metric, and

IGRP uses a composite of information measure and delay.

Table 3: Distance Vector Protocol Summary

Individuality Description

Periodic updates
Periodic updates are sent at a set interval. For IP RIP,

this interval is 30 seconds.

Broadcast updates

Updates are sent to the broadcast address

255.255.255.255. Only devices running routing

algorithms listen to these updates.

Full table updates When an update is sent, the entire routing table is sent.

Triggered updates
Also known as Flash updates, these are sent when a

change occurs outside the update interval.

Split horizon

You use this method to stop routing loops. Updates are

not sent out an outgoing interface from which the source

network was received. This saves on bandwidth as well.

Count to infinity
This is the maximum hop count. For RIP, it is 15 and for

IGRP, it is 255.

Algorithm One algorithm example is Bellman-Ford for RIP.

Examples RIP and IGRP are examples of distance vector protocols.

DISTRIBUTED BELLMAN FORD ALGORITHM

Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Volume-55, No.1(XI) 2021 53

Distributed Ford additionally referred to as Distance Vector Routing rule a accepted shortest path

routing rule with time quality of O(|V||E|) wherever, V is vertices and E is edges. This rule takes care

of negative weight cycles.

The Ford rule may be a Dynamic Programming rule that solves the shortest path downside. it's at the

structure of the graph, and iteratively generates a stronger resolution from a previous one, till it

reaches the most effective resolution. Bellman-Ford will handle negative weights without delay, as a

result of it uses the complete graph to enhance an answer. the thought is to begin with a base case

resolution S0, a collection containing the shortest distances from s to any or all vertices,

mistreatment no edge in the slightest degree. within the base case, d[s] = 0, and d[v] = ∞ for all

alternative vertices v. we have a tendency to then proceed to relax each edge once, building the set

S1. This new set is associate degree improvement over S0, as a result of it contains all the shortest

distances mistreatment one edge of d[v] is lowest in S1 if the shortest path from s to v uses one edge.

Now, we have a tendency to repeat this method iteratively, building S2 from S1, then S3 from S2,

and so on... every set Sk contains all the shortest distances from s mistreatment k edges. Distance

d[v] is lowest in Sk if the shortest path from s to v uses at the most k edges.

Algorithm: Bellmen Ford Algorithm

Vector< pair<int, int> > Edge List; // A list of direct edges (u,v)

int graph[128][128]; // Gives the weight

int n,distt[128];

void bellman-ford(int s)

{

//Initialize our solution to the BASE CASE S0

for(int i=0; i<n; i++)

distt[i] = INT_MAX;

distt[s] = 0;

for(int k=0; k<n-1; k++)

{ //n-1 iterations

// Builds a better solution Sk+1 from Sk

for(int j=0; j< EdgeList.size(); j++)

{ // Try for every edge

int u= EdgeList[j].first, v=EdgeList[j].second;

if(distt[u] < INT_MAX && distt[v] > dist[u] + graph[u][v]) //relax

distt[v] = distt[u] + graph[u][v];

}

}

// …Now we have the best solution after n-1 iterations

}

We tend to begin with a base case S0, and repeatedly relax each edge to come up with Sk+1 from Sk.

Note that within the relaxation step, we tend to don'trelax a foothold if distt[u] is time, or otherwise

we tend to could get overflow within the addition (conceptually we tend to ne'er wish to relax such a

foothold anyway). additionally note that the order of mistreatment the perimeters will have an effect

on the intermediate sets Sk, as a result of we tend to could 1st relax a foothold (u,v), then relax

another edge (v,w) within the same step, whereas selecting the reverse order of those 2 edges might

not relax them each. However, we tend to currently show that Sn-1 is exclusive, and contains the

shortest distance doable from s to any vertex v.

Proposition: (Accuracy of Bellman-Ford) Let Sk denotes the set of distances from s specified d[v] is

borderline in Sk if the shortest path from s to v uses at the most k edges. Then the Bellman-Ford rule

builds S0, S1, ..., Sn-1 iteratively. Also, Sn-1 is that the best answer and its distinctive proof. We’ve

got antecedently establish that the Bellman-Ford rule generates S0, S1, ..., Sn-1 iteratively within the

Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Volume-55, No.1(XI) 2021 54

higher than paragraphs. Now, assumptive that negative weight cycles accessible from the supply

don't exist within the graph, Sn-1 can contain the shortest doable distances from s to the other

vertices. this can be as a result of any come in the graph can go in a cycle if we tend to use over n-1

edges, and since negative cycles don't exist, we tend to ne'er wish to use these positive weight cycles

as a part of a shortest path. And, as a result of Sn-1 contains the most effective distances, it's

exclusive. QED. So, the Bellman-Ford rule is correct, however will it continually terminate? It will,

as we tend to solely have 2 loops, one in succession n-1 iterations, and also the different browsing all

edges. Hence, the rule continually terminates, and contains a run time of O (n*m). Whereas the

Bellman-Ford rule will handle negative weight edges pronto, the correctness of the rule breaks down

once negative weight cycles exist that's accessible from s. However, the character of the rule permits

United States to discover these negative weight cycles. the thought is that, if a negative weight cycle

exist, then Sn-1 are constant as Sn, Sn+1, Sn+2, ... If we tend to run the iteration step over n-1 times,

we are going to not be ever-changing the solution. On the opposite hand, if a negative weight cycle

exist, then one amongst its edges should have negative weight, and any such edge are often relaxed

more even once n-1 iterations, decreasing a number of the distances. Hence, to discover negative

weight cycles, we tend to simply got to run the Bellman-Ford rule, and once it terminates, check

whether or not we are able to relax any edges. If we can, then that edge is accessible from a negative

weight cycle, and also the cycle is additionally accessible from the supply.

Detecting negative weight cycles in a graph

vector< pair<int,int> > EdgeList; // A list of directed edges (u,v)

int graph[128][128]; // Gives the weight

int n, distt[128];

int main()

{

// …Set up the graph

bellman-ford(0); // Run bellman-ford on s=0

// Check for negative weight cycles reachable from s

for(int j=0; j< EdgeList.size(); j++)

{ // Try for every edge

int u= EdgeList[j].first, v= EdgeList[j].second;

if(distt[u] < INT_MAX && distt[v] > distt[u] + graph[u][v]) // can relax

cout << “Negative cycle reachable from s exists.” << end1;

return 1;

}

cout << “No negative cycle detected, shortest distance found.” << end1;

return 0;

}

Bellman-Ford is slower than Dijkstra's, but with this added functionality of handling negative

weights and detecting negative cycles easily, it can be more useful in some cases. In particular, in a

directed acyclic graph (one with no cycles), we can use Bellman-Ford to find the longest path from s

to any vertices v, by simply changing all the positive weights to negative, and vice versa. Note that

finding the longest path in a general graph is N.

VI. CONCLUSION

Distance-vector protocols suffer from slow convergence, and area unit extremely vulnerable to loops.

The Bellman-Ford algorithmic rule is employed to see the shortest path. If the state of a link changes,

like a router interface failing, a poster containing solely this link-state modification are sent to all or

any routers among that space. Every router can regulate its topology table consequently, and can

calculate a brand new best route if needed. Maintain a uniform topology routing table among all

routers in a location. Link-state protocols will converge terribly quickly and area unit proof against

routing loops.

Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Volume-55, No.1(XI) 2021 55

REFERENCES

[1] Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach," 3rd Edition,

Morgan Kaufmann, MIT, 2003.

[2] Andrew S. Tanenbaum, "Computer Networks, "Fourth Edition, New jersey, Prentice Hall, Inc.,

2003. [3] James F. Kurose & K. W. Ross, "Computer Networking: A Top-down Approach Featuring

the internet," 2nd Ed, Peaison Education Asia, 2003.

[4] V. Gambiroza, P. Yuan, L. Balzano, Y. Liu, S. Sheafor, and E. Knightly, "Design, Analysis, and

Implementation of DVSR: A Fair HighPerformance Protocol for packet Rings," In IEEE/ACM

Transaction on Network, Vol. 12, No. 1, 2004.

[5] William Stalling, "Data and Computer Communications, pearson Education, Inc., Publishing as

Prentice Hall, New Jersey, 2011.

[6] Z.Xu and et.al, "A more Efficient Distance Vector Routing Algorithm," In proc. IEEE MILCOM

'97 Proceeding, Vol.2, 1997.

 [7] Roch Guerin and Ariel Orda, " Computing Shortest Paths for any Number of Hops," In IEEE

Transaction on Network, Vol. 10, No. 5, 2002.

[8] T.H Comrmen, C.E. Leiserson, and R.L. Rivest, "An Introduction to Algorithms," Second

Edition, MIT Press, Boston, 2002.

[9] Y. Mourtada,"Routing Basics & Protocol," Internet draft, 2000.

[10] Jayaprakash R., Balasubramanian R. (2020) DLBPS: Dynamic Load Balancing Privacy Path

Selection Routing in Wireless Networks. In: Sengodan T., Murugappan M., Misra S. (eds)

Advances in Electrical and Computer Technologies. Lecture Notes in Electrical Engineering, vol

672. Springer, Singapore. https://doi.org/10.1007/978-981-15-5558-9_70

[11] Jayaprakash, R., & Radha, B. (2020). An Implementation of Trusted Key Management Protocol

(TKMP) in Wireless Network. Journal of Computational and Theoretical Nanoscience, 17(12), 5243-

5249.

https://doi.org/10.1007/978-981-15-5558-9_70

