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Abstract: Agriculture, a powerful word that requires no definition, contributes the most profitable 

share of the Indian Economy. On a wider view, intensifying productivity requires very basic things 

like improving the quality and quantity of the productivity and dwindling the agricultural expenses. 

There are certain cases that affect productivity, among which the presence of weeds and pests in crop 

fields stands top. Traditional methods, such as manual removal of weeds and spraying of 

agrochemical products like herbicides, and pesticides have chances of harming the crops and also 

add to the expenses. Selective treatment against weeds and pests is a cost-effective method that 

reduces manpower and usage of the agrochemical, at the same time it requires an effective computer 

vision system to identify issues and should be smaller in size to run in the resource-constrained 

device. Machine learning-based activities for identifying weed portions and pest detections are 

tedious and time-consuming processes. This research work presents a method of effective 

segmentation in the agricultural field, to accomplish this; a convolution neural network is proposed 

named Reduced Residual U-Net Convolution (RRUNC) network. It is an encoder-decoder based 

architecture. This network employs semantic process to analyse the crop field images pixel-wise. In 

order to reduce the parameter size, the deep convolution technique is used which curtails the number 

of parameters generated by the model with a very negligible in the accuracy. The experimental 

findings show that the proposed deep learning-based RRUNC model outperformed well in terms of 

segmentation results with good accuracy and less error-rate. 
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I.INTRODUCTION 

The agricultural sector plays a crucial role in the economy and is considered to be one of the 

cornerstones of the economy of developing countries, especially India. Because food and raw 

materials are not the only things that agriculture provides: it also gives employment for a huge 

number of the population in India. According to the Indian Agriculture and Allied Industry report 

published in November 2021, about 58% of India’s population relies on agriculture as its primary 

source of income. A total of 17.8% of India's Gross Value Added (GVA) in FY20 came from 

agriculture and related sectors. Globally, India is ranked fifth in terms of production, consumption, 

export, and expected growth.  

 

Traditional agricultural activities spend a lot of time and expenditure on their agricultural work due 

to the lack of use of technological advancements. To preserve their production from weeds, farmers 

utilized physical weeding and spraying of herbicides in the past. Manual weed removal increases 

expenditures and takes more time and effort, thus increasing labour costs. While spraying herbicides 

over agricultural land may spoil the soil, it also has the potential to turn plants deadly, posing a risk 

to human health. Farmers are losing interest in their agricultural labour as a result of this, and are 

leaving the industry. To address these difficulties and boost production with existing agricultural 

land, agricultural activities should utilize modern research and technology development. This 

research focuses on finding a more efficient strategy to deal with weeds and pests. 

 

Weeds are the most important biotic constraint impacting agricultural production. Weeds are 

invasive plants. The presence of weeds in a crop field impairs the yield, quantity, and quality. It 

degrades the crop yield invisibly. The weeds absorb all the nutrients required by the crops from the 
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soil, water, and fertilizer. In the absence of adequate nutrients, crops may become of poor quality and 

hence susceptible to crop diseases. Weeds are not susceptible to pests and diseases since these are 

normally controlled by their natural habits. As a result, it quickly spreads across a wide area taking 

up more space on agricultural land which decreases crop yields. 

 

Pests are another major threat to agriculture productivity. Pests infest agriculture fields, causing a 

variety of diseases and wreaking havoc on plants. The presence of pests in agricultural land prevents 

farmers from getting good yields from their harvests. Consequently, identifying pests earlier in their 

life cycle is an essential and profitable practice for farmers, as they can avoid most of the crop 

diseases that affect their crops. But in reality, it is difficult to identify these diseases at an early stage. 

 

For pest identification, they rely on visual assessments done by the agronomist force (Yadav et al. 

2021). Identifying the right agronomists at right time is not practically possible. Most pest diseases 

have identical characteristics, making it difficult to identify correctly even for experienced farmers. 

As a result, it may lead to inadequate treatment, which is equally damaging to plants. Pest can be 

controlled a little easier in earlier stages rather than in posterior stages. But, many pests in their early 

stages are worm-like, and so it's more difficult to classify them. Some of the sample pest images of 

earlier and later stage are shown in Figure 1. Therefore, farmers might fail to take the right action at 

the earliest stage, and before implementing the necessary measures the pest may spread to half of the 

field. Utilizing current technology and automating a few of their activities could allow them to 

overcome these challenges, like weed detection, and pest detection that cannot be solved using 

traditional methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. LITERATURE SURVEY 

This section provides an overview of the contributions of computer vision applications to agricultural 

activities against weeds and pests. In the real world, especially in the agriculture field, a deep 

learning model that is both computationally and accurately efficient is required. The majority of 

research work in the deep learning field is concerned with developing new deep learning architecture 

to improve efficiency, while a few studies look at parameter and model size reduction. 

 

Simonyan & Zisserman (2014) proposed a way of constructing a deep learning model. A constant 

and small-sized kernel 33 is used in all the convolution layers of their proposed CNN model, where 

the depth of this model was 16 -19 convolution layers. Here, each layer is equipped with ReLU 

activation and Batch Normalization function. As we descended deeper into the model, the number of 

filters doubled, such as 64, 128, 256, and 512. 

Figure 1. Some of the sample images of pests that are in worm type in its earlier stage. a) Wireworm – earlier stage, b) 

Wireworm – later stage, c) Armyworm – earlier stage, d) Armyworm – later stage, e) Ampelophaga – earlier stage, f) 

Ampelophaga – later stage, g) Wheat sawfly – earlier stage, h) Wheat sawfly – later stage 
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For autonomous driving car applications, Badrinarayanan et al. (2017) presented an encoder-decoder 

based SegNet architecture. Here, the proposed model was organized in such a way that every 

block/layer in the encoder has a corresponding block/layer on the decoder side. In this work, the 

usage of pixel-wise labeling to segment road scene objects like vehicles, buildings, pedestrian trees, 

and other objects for smooth driving of a car, is considered. Both encoder and decoder have 13 

convolution layers on each side. Yasrab et al. (2017) proposed a CNN for Semantic Segmentation for 

driver Assistance system (CSSA), which employed a semantic segmentation technique. The structure 

of the CSSA architecture is based on SegNet architecture along with the dropout layer. The model 

size of CSSA was ~30 MB and Class Average Accuracy achieved (CAA) was 60.2%. 

 

The U-net architecture, which is an encoder-decoder type model, was proposed by Ronneberger et al. 

(2015). A contracting path and a symmetric expanding path are the two major components of this 

model. The significance of the proposed work lies in combining the contracting path with expanding 

path by creating a concatenation path that integrates the feature map generated in the contracting 

path with the expanding path. Since this model used the unpadded convolution, there is a possibility 

of losing corner features. 

 

For segmenting the head-shoulder section of pedestrians, Xie et al. (2019) used a modified version of 

the UNet architecture. Because it used a large number of filters in the convolution layers of its 

design, it created a significant number of parameters. Augustaukas  and Lipnickas (2019) proposed a 

pixel-wise road pavement defect detection method. The underlying model structure was based on the 

U-Net architecture and the convolution layers in this model were using padded convolution 

operations. This was used to detect the pixel-level cracks in the road which helped in the 

maintenance and monitoring of roads. 

 

Naqvi et al. (2020) introduced the OcularNet model for accurately detecting ocular areas like the iris 

and sclera. The suggested OcularNet model was a SegNet architecture with lite-residual encoders 

and decoders. The key functionality of this work was using the residual skip-connection between the 

convolution layers of the SegNet model. It helps to transfer the high-frequency information among 

the convolution layers, which were used to attain precise ocular regions segmentation with the true 

boundary of ocular regions. 

 

The DenseNet model was developed by Huang et al. (2017), in which each layer is connected to 

every other layer in the model using the concatenation operation in a feed-forward way. As a result 

of this, feature maps generated by all the preceding layers could be given as to a layer and its own 

feature map was used as input to its subsequent layers. Hence the vanishing gradient problem was 

reduced, and feature maps were better utilized with dense connectivity. 

 

For efficient object identification, Tan et al. (2020) developed EfficientDet, a one-stage object 

detector that used a weighted bidirectional feature network and a tailored compound scaling 

algorithm. The proposed EfficientDet model was delivered as different variants, such as EfficientDet 

D0 to D7. All these variants were evaluated with the COCO dataset and achieved better accuracy 

with fewer parameters. 

 

Yankun et al. (2021) introduced the Large Motion Trend fusion (LMT-CH) vehicle tracking 

algorithm, which was based on the big motion trend coupled with the colour histogram. The 

EfficientDet model was employed as the underlying model in this vehicle tracking algorithm, which 

increased the accuracy of the real-time applications. The approach's shortcomings were that accuracy 

might be marginally reduced if vehicles suffered significant changes during the drive. 
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The motivation behind the work proposed by Chen et al. (2021) was guiding model selection for the 

critical task of Vehicle and pedestrian detection in autonomous driving applications. In this work, the 

authors analyzed several object detection models, including Faster R-CNN, R-FCN, and SSD, along 

with several typical feature extractors, such as ResNet50, ResNet101, MobileNet_V1, 

MobileNet_V2, Inception_V2, and Inception_ ResNet_V2. Further, all the above models were pre-

trained with the COCO dataset for improving their performance. Later, various experiments were 

conducted on these pre-trained models using the benchmark KITTI dataset. Finally, the authors 

demonstrated that Faster R-CNN ResNet50 obtained the highest AP and SSD MobileNet_V2 was the 

fastest model. 

 

A CNN architecture without anchors was built by Liu et al. in 2020. He also made a frame-by-frame 

technique incorporating a lightweight stacked hourglass network to predict the heatmap at the center 

point of a surgical tool for real-time surgical tool detection during robot-assisted surgery. On the 

VisDrone2019 dataset, Pailla et al. (2019) employed CenterNet with the HourGlass-104 backbone 

network for real-time object detection, outperforming other significant object detection models. 

 

Chen et al. (2019) suggested a separable convolution-based CNN model with greater parameter 

efficiency to adaptively extract forensics-related features from picture patches. To achieve parameter 

efficiency, the suggested model uses a separable convolution technique rather than the traditional 

convolution technique. The proposed model was used with a smaller size image like 32×32. 

 

This section also discussed various existing research work carried out on the process of detecting 

weeds, and pests in the agricultural field, which includes both machine learning, and deep 

learningbased approaches. Machine Learning-based approaches struggle hard to produce better 

results because of their manual feature extraction process. Deep Learning-based approaches 

simplified the feature extraction process that helps to improve the model's performance. As a result 

of this, efficient deep learning models were developed to aid in the improvement of Smart farming 

performance in terms of crop-weed segmentation, and pest detection in agricultural activities. 

 

III. MATERIALS & METHODS 

To build a computer vision application for segmenting pest and weed portions in the agricultural 

field images, an encoder-decoder based on the deep learning model is built and trained using a large 

number of images and their corresponding target label images. In these images, the pixels can be 

categorized into three classes: background, pests, and weeds. Accurate pest-weed section 

segmentation is made feasible by identifying every pixel in the image rather than just one whole 

image (Long et al. 2015). Later, this trained model can be utilized to segment pest-weed portions 

from the unseen images. This work proposes a pest weed segmentation model based on Unet (Xie et 

al. 2018), DeepUnet (Li et al. 2018), and Residual Blocks (Naqvi et al. 2020), where the strength of 

residual and skip connections is incorporated into the encoder-decoder model. 

 

The primary objective of the proposed approach is to build an effective computer vision system 

using a deep learning model to facilitate pixel-wise labeling in-order to classify the crops and weeds 

accurately in the agricultural land. This can be used to aid robotics to do selective spraying and 

mechanical weed removal. The proposed model is effective in every way, including obtaining a high 

segmentation accuracy, being less computationally complex, reduction in the size of the model, and 

having a lower error rate. The system framework of the proposed work is shown in Figure 2. 
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3.1 Data Pre-processing 

The dataset used here is the benchmark dataset, Crop/Weed Field Image Dataset (CWFID) proposed 

in the work (Haug&Ostermann 2014). This dataset contains 60 RGB images with their 

corresponding annotated label images. The annotation process of the CWFID dataset was done by 

the experts (Haug&Ostermann 2014). The portions of the actual crop field images are categorized 

into three classes, namely crop, weed, and background. In the label images, the crop field portions 

are shaded with different colours such as red, yellow, and black for the crop, weed, and background 

portions, respectively. 

 

Dataset is fuel for building a deep learning model for any application. The success of building an 

efficient deep learning model requires a large number of images to train the model otherwise model 

is prone to overfit. An effective way to address this issue is data augmentation. Data augmentation is 

used to create new transformed images from existing original images available in the dataset. With 

this, a larger dataset can be created from the existing smaller dataset. This helps to upgrade the 

ability of the model to generalize and improve its performance since it creates more variance in 

training images. 

 

Initially, the existing 60 RGB images and annotated images are divided into a 5:1 ratio for the 

training and testing process. At this rate, both the actual crop-field and label images are applied for 

various augmentation operations like rotation, horizontal flipping, vertical flipping, height shifting, 

width shifting, zooming, and shearing. In order to create a valid pair of actual and label images 

during the augmentation process, these augmentation operations must be applied in the same order 

on both, the actual field images and the label images. This is an extremely crucial task when 

augmenting the training images of encoder-decoder based segmentation model. The effect of each 

augmentation operations on a sample actual and label image, with this augmentation process, a new 

dataset containing 750 training images and 100 testing images is created, and every image is resized 

to 224×224×3. 

 

3.2 Proposed Model Architecture 

To achieve the precise crop-weed segmentation, a model called Reduced Residual U-Net 

Convolution (RRUNC) is proposed in this work, which is an Encoder-Decoder based U-Net 

architecture (Ronneberger et al. 2015) where depth-wise separable convolution is used as core 

convolution operation. It contains two major sections, namely the contracting path and expanding 

path. This architecture has 19 convolution layers in total, which is fewer than some of the top 

architectures, including VGG19 (Simonyan & Zisserman 2014), SegNet (Badrinarayanan et al. 

2017), and Deep UNet (Li et al. 2018). The structure of the proposed RRUNC architecture is 

illustrated in Figure 3. 

 

 

 

 

 

Figure 2. The system framework of the proposed crop-weed 
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In the proposed RRUNC, a Residual Deep Convolution Block (R-DCB) is introduced. Among the 19 

convolution layers, 16 convolution layers are organized as 8 R-DCB units (in which 4 units are 

located in the contracting path; 4 units are located in the expanding path), one-layer acts as the 

middle layer, and two layers are used to input and output the image. Additionally, a down-sampling 

layer and a dropout layer are added in the contracting path following each R-DCB unit, and an up-

sampling layer is added corresponding to the down-sampling layer in the expanding path. Going 

deeper into the contracting path, the number of filters used in the R-DCB unit is increased as 32, 64, 

128, and 256 which is lesser than the number of filters used in the modified U-Net network (Xie et 

al. 2018), and the reversed order is used in expanding path. The middle layer contains 512 numbers 

of filters. 

 

Here, the output of each R-DCB unit in the contracting path is integrated with the same level of R-

DCB unit in the expanding path using a concatenation path via the concatenation unit. The output of 

each contracting path R-DCB unit is combined with the feature map from the appropriate up-

sampling layer using the concatenation path and concatenation unit, which is then fed into the R-

DCB unit. Hence, the location information from the contractive path is integrated with contextual 

information in the expanding path to form generalized information that helps to obtain excellent 

segmentation accuracy. 

 

3.3 Residual Deep Convolution Block (R-DCB) 

The structure of the R-DCB unit is shown in Figure 4. Each unit contains two convolution layers and 

one residual connection. Each convolution layer is followed by the ReLU activation layer and Batch 

Normalization (BN) layer to increase the segmentation accuracy and its outputs are represented by 

y1 and y2. Assume x, y are the input and output of an R-DCB unit, the ReLU activation function and 

Batch Normalization are represented by σ, the convolution operation is represented by Mci and the 

function of the RDCB unit is represented by MR-DCB (x) respectively. The mathematical form of y1 

and y2 are mentioned in Equations (3.1) and (3.2) respectively.  

y1 = σ (Mc1 (x))       (3.1) 

y2 = σ (Mc2 (y1)       (3.2) 

= σ (Mc2 (σ (Mc1 (x))))       (3.3) 

The residual connection layer adds both outputs y1 and y2 and then it is fed into ReLU activation 

layer and BN layer whose output is represented in the Equation (3.4).  

 

y = MRDCB (x) = σ (y1 + y2) = σ (σ (Mc1 (x)) + σ(Mc2 (σ (Mc1 (x)))))     (3.4) 

            

Figure 3. The Structure of proposed Reduced Residual U-Net Using 

Convolution (RRUNC) Model Architecture 
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The residual connection path in the RDCB unit facilitates local residual learning to improve the 

information flow among the architecture blocks. It will improve the representation capacity of the 

model and will curtail the error rate of the segmentation with the smaller dataset. So, the corner 

features of the crops and weeds can be predicted accurately. 

 

 
 

 

 

 

 

 

 

 

 

Figure 4. The Structure of Residual Deep distinguishable Convolution Block (RDCB) Unit 
 

3.4 Pruning the Model 

Usually, the machine/deep learning model is the core component of computer vision applications. 

Since the target environment (agricultural land) includes resource-constrained devices, building a 

real-time computer vision application to aid farmers requires a smaller size model. Although larger 

deep learning models may perform better in a lab environment, they are more difficult to implement 

in devices with limited resources. Even though it has been deployed, it fails to give better results. For 

this, the proposed deep learning model has been compressed using filter pruning. 

 

After building the final model, the model will undergo a training process till achieving better 

validation accuracy and test accuracy. Subsequently, the model will be exposed to the pruning 

process to reduce the size of the model (Gaikwad & El-Sharkawy 2018, Mao et al. 2019). During the 

pruning process, the redundant and insignificant connections and their corresponding lowest 

magnitude weights are iteratively eliminated. So, the connection between the channels will become 

sparse. This pruning process achieves significant size reduction in the final model and it can be 

delivered by less than ~3MB in size without significant recession in performance. 

 

IV. EXPERIMENTAL ENVIRONMENT DESIGN 

The design of the experimental environment for implementing the proposed model and the 

evaluation metrics used to measure the performance of the proposed model are discussed here. 

 

4.1 Experimental Setup 

All the models utilized in this work are based on Tensor Flow and Keras framework. These models 

have been experimented on the online Google Colab platform which provides NVIDIA TeslaT4 

GPU with CUDA Version 11.2, RAM of 13 GB, and Disk Space of 68 GB. Google Colab is a 

Google product that allows python code to be run on a cloud environment via a web browser, and 

hence there is no hardware restriction for it. Simple computers with an internet connection are 

capable of running it. 

 

The proposed network is trained from the scratch using a dataset of 750 RGB images and its 

equivalent annotated images or labelled images; each image is a size of 224×224×3. For tracking the 

performance of the model during training epochs, the training dataset is split into training and 

validation datasets using the cross-validation method. Since the validation_split = 0.2 is used here, 

20% of the images from the training dataset are brought into the validation set. Hence, 600 images 

are used for the training process and 150 images are used for the validation process in every epoch. 

When cross-validation is used, images from training and validation datasets are shuffled between 

them on each training epoch. Hence, all the images in both the training and validation dataset are 
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utilized for training the model. Even though the training and validation split reduces the training 

samples, it will not degrade the model performance because of the cross-validation method.  

 

Later, for testing the trained model, a separate test data set is built using a holdout method, which 

contains 100 crop field images and their equivalent label images. The holdout method for training 

and testing split was chosen because it helps to evaluate the model's ability in segmenting the weed 

and pest portions on unseen images. 

 

The proposed model is trained with 80 training epochs with the batch size as 5 images per batch and 

each epoch contains 120 steps. The loss function used here is categorical_cross_entropy. Since, it has 

three classes which are crop, weed, and soil, this loss function is quite suitable. This measures the 

cross-entropy loss between the label and prediction. For this, labelled images are transformed into 

one-hot representations for facilitating the comparison between prediction and labels. During the  

training, the loss between the prediction and labels is optimized utilizing an ADAM optimizer with a 

learning rate of 0.001. It is a stochastic gradient descent method that depends on the adaptive 

estimation of first-order and second-order moments. 

 

After pruning the model, two more training epochs were implemented for fine-tuning the model. The 

other significant deep learning architecture like SegNet (Badrinarayanan et al. 2017), U-Net (Xie et 

al.2018), and Residual U-Net (Yang et al. 2019) are implemented and their architecture configuration 

details are given in Figure 5. These architectures are trained with the same augmented CWFID 

dataset in the same experimental setup and the performance is evaluated for comparison. 

 
Figure 5. The configuration of Residual U-Net architecture 

4.2 Evaluation Metrics 

In this work, six metrics are used to evaluate the performance of the model, which are  

 Accuracy (A), 

 Error-rate (E), 

 Overall Precision (OP), 

 Overall Recall (OR), 

 Overall F1 score (OF), 

 Number of Parameters (NoP) 
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Accuracy (A) states that the percent of the pixels in the prediction image is predicted correctly. 

Error-rate (E) is expressed as the rate of pixels in the prediction image is predicted wrongly, when 

compared to label images. Overall Precision (OP) is expressed as the ratio of correctly predicted 

positive observations to all predicted positive observations. Over Recall (OR) is the ratio between the 

number of correctly predicted positive observations and the total number of observations in the 

actual class. Overall F1 score is a metric that considers both OP and OR and it is a harmonic mean of 

OP and OR.  

The mathematical forms of the above metrics are mentioned in Equations 4.5 to 4.9, respectively. 

The Number of Parameters (NoP) generated by the model is a total number of the learnable elements 

of all the convolution layers in CNN for deep convolution respectively. 

 

Accuracy (A) = (OTP+OTN) / (OTP+OTN+OFP+OFN)     (4.5) 

Error-rate (E) = − Yj∗log(Pj)                    (4.6) 

Overall Precision (OP) = OTP/ (OT P+OFP )     (4.7) 

Overall Recall (OR) = OTP OTP+OFN       (4.8) 

𝑂𝑣𝑒𝑟𝑎𝑙𝐹1 = 2 × 𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑅𝑒𝑐𝑎𝑙𝑙𝑂𝑃+𝑂𝑅   (4.9) 

where OTP is Overall True Positive, OTN is Overall True Negative, OFP is Overall False Positive, 

OFN is Overall False Negative, t is the total number of samples, Pj represents the jth predicted 

output of the model, and Yj represents the corresponding j-th target pixel value. 

 

Accuracy (A) = (OTP+OTN) (OTP+OTN+OFP+OFN)    (4.10) 

 

V. RESULTS AND DISCUSSION 
At first, the deep learning architectures SegNet (Badrinarayanan et al. 2017), U-Net (Xie et al. 2018), 

Residual U-Net (Yang et al. 2019), and proposed RRUSC (Reduced Residual U-Net using Standard 

Convolution) networks are implemented with a standard convolution technique. These models are 

trained using the training parameters mentioned in Table 1. The metrics of the proposed architecture 

RRUSC are considerably good, achieving a segmentation accuracy of 96.14% at validation time and 

95.37% at testing time, which is higher than that of others. The overall F1 score achieved by the 

proposed RRUNC is also good and better than other state of the art models. So, it is computationally 

very expensive since it is implemented using a standard convolution technique. 
Table 1. Training Parameters 

Training Parameters Values 

Batch size 5 
Steps per epoch 120 
Leaning rate 0.001 
Optimizer ADAM optimizer 
Loss function categorical cross_entropy 

As part of the crop-weed segmentation task on the CWFID dataset, Hashemi-Beni et al. employed 

FCN-8s, FCN-16s, FCN-32s, and U-Net deep learning models (Hashemi-Beni et al. 2022). The 

performance comparison of the proposed RRUNC model with the existing work is presented in 

Table 2. From Table 2, the proposed Pruned RRUNC achieved a better segmentation accuracy of 

96.06%, when compared to that of the existing models. 
Table 2. Comparison with existing work 

 

ModelName 
A (%) NoP 

(Million) 

Model

Size 

(MB) 

FCN-8s 81.1 - - 
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FCN-16s 77.2 - - 

FCN-32s 68.4 - - 

U-Net 77.9 - - 

ProposedPruned RRUNC 96.06 0.655 2.34 

A-Accuracy, NoP–Number of Parameters, -Not given in the paper 

 

 

 

 

(a) (b) 

Figure6. Learning curves of the proposed RRUNC Model, 

a) Accuracy curve, b) Error rate curve 

 

VI. CONCLUSION 

An encoder-decoder based deep learning model, named Reduced Residual U-Net using Convolution 

(RRUNC) network is proposed in this work for crop-weed segmentation. Residual Deep separable 

Convolution Block (R-DCB) was introduced. The proposed model is constructed in a 

computationally effective manner without degrading the performance of the model. The performance 

of this proposed model was evaluated using the benchmark dataset Crop Weed Field Image Dataset 

CWFID). The experimental findings show that the proposed deep learning-based RRUNC model 

outperformed well in terms of segmentation results with good accuracy and less error-rate. This 

proposed smaller model size is more suitable to build a lightweight computer vision application for 

weed portions and pest detection on agricultural land. It is also easily deployed on resource- 

constrained portable devices used by the farmers in the agricultural field. 
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