DEPARTMENT OF MATHEMATICS
 Programme: B. Sc. Mathematics

Vision

To be among the top ten centers of excellence in Mathematics at the national level through quality Mathematics education and research.

Mission

Department of Mathematics, through our enlightened management and committed faculty envisages to

- provide world-class education to the students of Mathematics
- give them a learning-centered environment
- ensure knowledge transfer
- instill research aptitude
- infuse ethical and cultural values
- transform our students into disciplined citizens in order to improve their quality of life.

Program Educational Objectives:

PEO1	The programme provides a strong foundation in breadth and depth of Mathematics and some specific areas of computer science which enables the student to pursue post-graduation in Mathematics, Applied Mathematics and computer applications.
PEO2	The programme also inculcate certain quantitative skills (self-confidence, leadership, decision making etc.) which would prepare students for managerial careers and transform the stakeholders into successful entrepreneurs.
PEO3	The practical and technical knowledge ensure significant and rewarding career opportunities in various service domains both National and Global level.
PEO4	The programme will stimulate logical and analytical reasoning that enables the students to crack competitive exams.
PEO5	With an interdisciplinary learning environment, the student develops necessary skills and values to handle diversified circumstances either individually or as a team.

Program Outcomes:

PO1	develop confidence, positive attitude and interest towards Mathematics. (K1)
PO2	understand and apply basic concepts of Mathematics, Statistics and Physics and their importance in the solution of some real-world problems.
PO3	apply various Mathematical techniques within the domain and also extend to multi-disciplinary environment.
PO4	analyze and make critical observations of any situation with Mathematical approach and demonstrate ways to solve them logically with precision. (K4)
PO5	endorse independent learning and acquire sound knowledge to understand the basic branches of Mathematics. (K3)
PO6	have thorough grasp over the concepts which faster individual discipline, responsibility and commitment and ensure professional ethics.
PO7	formulate new problems and find the ideas to attain their solutions and develop the codes using C and $\mathrm{C}++$ languages for simple problems.

Program Specific Outcomes:

PSO - 01	provide advanced knowledge on topics in pure and applied Mathematics, empowering thestudents to pursue higher degrees at universities and reputed academic institutions like NBHM, NIT, IIT, IISC etc.
PSO - 02	motivate and prepare students to clear civil service exams and to get employability in education, IT, Banking and insurancesectors and also to become successful entrepreneur .

N.G.M College - Curriculum Development Cell B. Sc. Mathematics Scheme of Examination For 2021-2022 Choice Based Credit System \& OBES									
For Part I and Part II in First \& Second Semesters Only									
SEMESTER - I									
Part	Subject Code	Title of the Paper	Hrs / Week		Exam Hrs.	Maximum Marks		Total Marks	Credits
			L	P		Internal	External		
I	21UTL101/ 21UHN101/ 21UFR101	Tamil Paper - I/	6	-	3	50	50	100	3
		Hindi Paper - I /		-					
		French Paper - I		-					
II	21UEN101	Communication Skills - I (Level I)	5	-	3	50	50	100	3
	21UEN102	Communication Skills - I (Level II)		-					
III	21UMS101	Core - I : Classical Algebra	5	-	3	50	50	100	4
	21UMS102	Core - II :Calculus	6	-	3	50	50	100	5
	21UMS1A1	Allied - I :Mathematical Statistics-I	6	-	3	50	50	100	5
IV	21UHR101	Human Rights	1	-	2	-	50	50	2
	21HEC101	```Human Excellence - Personal Values & SKY Yoga Practice - I```	1	-	2	25	25	50	1
V		Extension Activities Annexure I	-	-	-	-	-	-	-
CC	21CFE101	Fluency in English - I	-	-	-	-	-	-	-
		Online Course (Optional) (MOOC / NPTEL / SWAYAM)	-	-	-	-	-	-	Grade
Total			30		19	300	300	600	23

SEMESTER - II									
Part	Subject Code	Title of the Paper	Hrs / Week		Exam Hrs.	Maximum Marks		Total Marks	Credits
			L	P		Internal	External		
I	$\begin{aligned} & \text { 21UTL202 / } \\ & \text { 21UHN202 / } \\ & \text { 21UFR202 } \end{aligned}$	Tamil Paper - II /	6	-	3	50	50	100	3
		Hindi Paper - II /		-					
		French Paper - II		-					
II	21UEN202	Communication Skills - II (Level I)	5	-	3	50	50	100	3
	21UEN203	Communication Skills - II (Level II)		-					
III	21UMS203	Core - III :Trigonometry, Vector Calculus and Fourier Series	5	-	3	50	50	100	4
	21UMS204	Core - IV: Analytical Geometry	5	-	3	50	50	100	4
	21UMS2A2	Allied - II: Mathematical Statistics II	6	-	3	50	50	100	5
IV	21EVS201	Environmental Studies	2	-	2	-	50	50	2
	21HEC202	Human Excellence - Family Values \& SKY Yoga Practice - II	1	-	2	25	25	50	1
V		Extension Activities Annexure I	-	-	-	-	-	-	-
CC	21CFE202	Fluency in English - II	-	-	-	-	-	-	-
	21CMM201	Manaiyiyal Mahathuvam - I	-	-	2	-	50	50	Grade
	21CUB201	Uzhavu Bharatham - I	-	-	2	-	50	50	Grade
		Online Course (Optional) (MOOC / NPTEL / SWAYAM)	-	-	-	-	-	-	Grade
Total			30		19	300	300	600	22

SEMESTER - III									
Part	Subject Code	Title of the Paper	Hrs / Week		Exam Hrs.	Maximum Marks		Total Marks	Credits
			L	\mathbf{P}		Internal	External		
I	$\begin{aligned} & \hline \text { 21UTL303 / } \\ & \text { 21UHN303 / } \\ & \text { 21UFR303 } \end{aligned}$	Tamil Paper - III /	5	-	3	50	50	100	3
		Hindi Paper - III / French Paper - III		-					
II	$\begin{aligned} & \text { 21UEN303 } \\ & \text { 21UEN304 } \end{aligned}$	Communication Skills - III (Level I) Communication Skills - III (Level II)	6	-	3	50	50	100	3
III	21UMS305	Core - V: Dynamics	5	-	3	50	50	100	4
	21UMS306	Core - VI: Numerical Techniques	4	-	3	50	50	100	3
	21UMS3A1	Allied - III: Physics for Mathematics And Chemistry I	8	-	3	50	50	100	4
IV	$\begin{aligned} & \text { 21UMS3N1 / } \\ & \text { 21UMS3N2 } \end{aligned}$	Non Major Elective - I : Quantitative Aptitude - I/ Astronomy - I	1	-	2	-	50	50	2
	21HEC303	Human Excellence - Professional Values \& Ethics III	1	-	2	25	25	50	1
V		Extension Activities - Annexure I	-	-	-	-	-	-	-
CC	21CFE301	Fluency in English - III	-	-	-	-	-	-	-
	21CMM301	Manaiyiyal Mahathuvam - II	-	-	2	-	50	50	Grade
	21CUB301	Uzhavu Bharatham - II	-	-	2	-	50	50	Grade
Total			30		19	300	300	600	20

SEMESTER - IV									
Part	Subject Code	Title of the Paper	Hrs / Week		Exam Hrs.	Maximum Marks		Total Marks	Credits
			L	\mathbf{P}		Internal	External		
I	21UTL404 21UTL404 21UTL404	Tamil Paper - IV /	5	-	3	50	50	100	3
		Hindi Paper - IV/		-					
		French Paper - IV		-					
II	$\begin{aligned} & \text { 21UEN404 } \\ & \text { 21UEN405 } \end{aligned}$	Communication Skills - IV (Level I) Communication Skills - IV (Level II)	6	-	3	50	50	100	3
III	21UMS407	Core - VII : Statics	4	-	3	50	50	100	4
	21UMS408	Core - VIII : Operations Research-I	5	-	3	50	50	100	4
	21UMS4A2	Allied - VI : Physics for Mathematics And Chemistry II	8	-	3	50	50	100	4
	21UMS4A3	Allied Lab : Physics lab for Mathematics And Chemistry	-	-	3	50	50	100	2
IV	21UMS4N1 / 21UMS4N2	Non Major Elective - II : Quantitative Aptitude- II/ Astronomy - II	1	-	2	-	50	50	2
	21HEC404	Human Excellence - Social Values \& SKY Yoga Practice IV	1	-	2	25	25	50	1
V		Extension Activities Annexure I	-	-	-	-	50	50	1
CC	21CFE401	Fluency in English - IV	-	-	-	-	-	-	-
	21CMM401	Manaiyiyal Mahathuvam - III	-	-	2	-	50	50	Grade
	21CUB401	Uzhavu Bharatham - III	-	-	2	-	50	50	Grade
Total			30		22	350	400	750	24

SEMESTER - V									
Part	Subject Code	Title of the Paper	Hrs / Week		Exam Hrs.	Maximum Marks		Total Marks	Credits
			L	\mathbf{P}		Internal	External		
III	21UMS509	Core - IX : Modern Algebra	6	-	3	50	50	100	4
	21UMS510	Core - X : Real Analysis-I	6	-	3	50	50	100	4
	21UMS511	Core - XI : Operations Research-II	5	-	3	50	50	100	4
	21UMS512	Core - XII : Theory of Numbers	5	-	3	50	50	100	4
	21UMS5E1/ 21UMS5E2	Core Elective I : Programming in C/ Artificial Intelligence and Machine Learning	4	-	3	50	50	100	3
	21UMS5E3	Core Elective LabII: Programming lab in C	-	2	3	25	25	50	2
	21 UMS5AL	Advanced Learner Course -I (Optional): Advanced Operations Research - I -Self study	-	-	-	50	50	100	4*
	21UMS5VA	Department Specific Value Added Course : Adobe Photoshop (Mandatory)	30 hrs		-	-	-	-	Grade
IV	21UMS5S1/ 21UMS5S2	Skill Based Elective - I : Financial Mathematics-I / Network and Information Security	1		2	-	50	50	2
	21HEC505	Human Excellence - National Values \& SKY Yoga Practice - V	1	-	2	25	25	50	1
	21GKL501	General Knowledge and General Awareness - Self Study	SS		2	-	50	50	2
CC	21CFE505	Fluency in English - V	-	-	-	-	-	-	
Total			28	2	24	325	375	800	26

*Extra Credits

VALUE ADDED COURSES

1. Adobe Photoshop
Total Duration Hours:30
2. Python Training
Total Duration Hours:30

Question Paper Pattern

(Based on Bloom's Taxonomy)
K1-Remember, K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

1. Theory Examinations: 70 Marks (Part I, II, \& III)
(i) Test- I \& II, ESE:

Knowledge Level	Section	Marks	Description	Total
K1 \& K2 (Q 1 -10)	A (Q 1-5 MCQ) (Q 6-10 Define/Short Answer)	$10 \times 1=10$	MCQ Define	70 (Reduced to 50 for ESE $)$
K3 (Q 11-15)	B (Either or pattern)	$5 \times 4=20$	Short Answers	

2. Theory Examinations: 50 Marks (Part IV)

Knowledge Level	Section	Marks	Description	Total
K1 \& K2 (Q $1-10)$	A (Q 1-5 MCQ) (Q 6-10 Define / Short Answer)	$10 \times 1=10$	MCQ Define	50 (Reduced to
K3, K4 \& K5 $(Q 11-18)$	B (Answer 5 out of 8)	$5 \times 8=40$	Short Answers	25 for ESE)

3. Practical Examinations: 100/50 Marks

Knowledge Level	Criterion	External/Internal Marks	Total
K3	 Practical	$50 / 50$	100
K4	$25 / 25$	50	
K5			

[^0] to 50 for Total Mark calculation.

Components of Continuous Assessment THEORY

Maximum Marks: 100; CIA Mark: 50

Components		Calculation	CIA Total
Test 1	$(70 / 4.67)=15$		
Test 2 / Model	$(70 / 4.67)=15$		50
Assignment / Digital Assignment	10	$15+15+10+05+05$	
Seminar / Socratic Seminar	05		
Group Task : GD, Role Play, APS	05		

Maximum Marks: 50; CIA Mark: 25

Components		Calculation	CIA Total
Test / Model	10		
Assignment / Digital Assignment	5		$10+5+5+5$
Seminar / Socratic Seminar	5		
Group Task : GD, Role Play, APS	5		

PRACTICAL

Maximum Marks: 50; CIA Mark: 25

Components		Calculation	CIA Total
Test / Model	15		
Observation Note	5		$15+5+5$
25			
Record	5		

Maximum Marks: 100; CIA Mark: 50

Components		Calculation	CIA Total
Test / Model	30		
Observation Note	5		$50+5+15$
Record	15		

Maximum Marks: 200; CIA Mark: 100

Components		Calculation	CIA Total
Test / Model	60		
Observation Note	10	$60+10+30$	100
Record	30		

STUDENT SEMINAR EVALUATION RUBRIC

Grading Scale:

A	B	C	D
$\mathbf{5}$	$\mathbf{4}$	$2-3$	$\mathbf{0 - 1}$

CRITERIA	A - Excellent	B - Good	C-Average	D - Inadequate
Organization of presentation	Information presented as interesting story in logical, easy to follow sequence	Information presented in logical sequence; easy to follow	Most of information presented in sequence	Hard to follow; sequence of information jumpy
Knowledge of subject \& References	 Material sufficient for clear understanding AND exceptionally presented	 Material sufficient for clear understanding AND effectively presented	At ease with information; answered most questions \& Material sufficient for clear understanding but not clearly presented	Does not have grasp of information; answered only rudimentary Questions \& Material not clearly related to topic OR background dominated seminar
Presentation Skills using ICT Tools	Uses graphics that explain and reinforce text and presentation	Uses graphics that explain text and presentation	Uses graphics that relate to text and presentation	Uses graphics that rarely support presentation text and
Eye Contact	Refers to slides to make points; engaged with audience	Refers to slides to make points; eye contact majority of time	Refers to slides to make points; occasional eye contact	Reads most slides; no or just occasional eye contact
Elocution (Ability to speak English language)	Correct, \quad precise pronunciation of all terms Voice is clear and steady; audience can hear well at all times	Incorrectly pronounces few terms Voice is clear with few fluctuations; audience can hear well most of the time	Incorrectly pronounces some terms Voice fluctuates from low to clear; difficult to hear at times	Mumbles and/or Incorrectly pronounces some terms Voice is low; difficult to hear

WRITTENASSIGNMENTRUBRIC

Grading Scale:

A	B	C	D	F
$09-10$	$07-08$	$05-06$	$03-04$	$01-02$

CRITERION	A - Excellent	B - Good	C-Average	D - Below Average	F - Inadequate
Content \& Focus	Hits on almost all content exceptionally clear	Hits on most key points and writing is interesting	Hits in basic content and writing is understandable	Hits on a portion of content and/or digressions and errors	Completely off track or did not submit
Sentence Structure \& Style	* Word choice is rich and varies * Writing style is consistently strong * Students own formal language	* Word choice is clear and reasonably precise * Writing language is appropriate to topic * Words convey intended message	* Word choice is basic * Most writing language is appropriate to topic * Informal language	* Word choice is vague * Writing language is not appropriate to topic * Message is unclear	* Not adequate
Sources	Sources are cited and are used critically	Sources are cited and some are used critically	Some sources are missing	Sources are not cited	Sources are not at all cited
Neatness	Typed; Clean; Neatly bound in a report cover; illustrations provided	Legible writing, well-formed characters; Clean and neatly bound in a report cover	Legible writing, some ill-formed letters, print too small or too large; papers stapled together	Illegible writing; loose pages	Same as below standard
Timeliness	Report on time	Report one class period late	Report two class periods late	Report more than one week late	Report more than 10 days late

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS101		Batch:	$2021-2024$
		CLASSICAL ALGEBRA	Semester:	I
Lecture Hrs./Week or Practical Hrs./Week	5		4	

Course Objective

This course provides the learners a wide spectrum of basic mathematical concepts including summation of series, roots of an equation and matrices.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	recall the basic concepts of sequences, series and convergence.	K1
CO2	apply the concepts of convergence and divergence of series using various tests like Cauchy's root test, D'Alembert's ratio test to solve problems.	K3
CO3	solve problems related to Binomial, Exponential and Logarithmic series.	K4
CO4	apply Newton's method of divisors and Horner's Method to analyze the nature of the roots.	K4
CO5	diagonalize the matrix using Cayley-Hamilton theorem.	K3

Mapping

$\mathbf{P O} / \mathbf{P S O}$									
$\mathbf{C O}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 2}$	H	H	M	M	H	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	H	M	H
$\mathbf{C O 4}$	H	H	H	H	M	H	H		
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Convergency and Divergency of Series: Some general theorems concerning infinite series - Series of positive terms - Comparison tests - Cauchy's condensation test - D'Alembert's Ratio test - Cauchy's Root test -Raabe's test. Text Book 1: Chapter 2: Sections: 11-20.	14
	Binomial theorem: Application of Binomial theorem to summation of series. Exponential and logarithmic series:The Exponential theorem - Summation - The logarithmic series - Modification of the Logarithmic series - Series which can be summed up by the logarithmic series. Summation of series: Application of partial fractions. Text Book 1: Chapter 3: Section: 10. Chapter 4: Sections: 2.3, 3.1, 5- 7,9, 9.1 (No derivations). Chapter 5: Sections: 2.1, 3.1, 3.2.	13
Unit III	Theory of equations:Symmetric function of roots- Newton's Theorem on the sum of powers of the roots - To increase or decrease the roots of a given equation by a given quantity - Form of the quotient and remainder when a polynomial is divided by a binomial - Removal of terms (Self study). Text Book 1: Chapter 6:Sections: 12, 14 17-19.	13
Unit IV	Theory of equations: Multiple roots - Strum's theorem - Solutions of numerical equations - Newton's method of divisors - Horner's Method. Text Book 1: Chapter 6: Sections: 26, 27, 28.1-28.3, 29.4, 30.	12
Unit V		
	Fundamental Concepts: Nilpotent - Idempotent - Unitary - Orthogonal Matrices - Related Problems. Characteristic roots and Characteristic vectors: The Characteristic equation of transformation-Properties of the Eigen vectors - Cayley-Hamilton theorem (statement only)-Diagonalization of a Matrix. Text Book 2: Chapter 1. Text Book 2: Chapter 4.	13
	$\mathbf{6 5}$	

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.
Assessment Methods:
Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Books:

1. Manicavachagompillay T. K, Natarajan T. and Ganapathy K. S, Algebra Volume I, S. Viswanathan Pvt. Ltd,First edition, 2010.
2. Kandasamy P. and Thilagavathi K, Mathematics for B. Sc. Branch - I, Volume II, First Edition, 2004.

Books for Reference:

1. Ray M. and Sharma H. S, A text book of Higher Algebra, S. Chand \& Company, 1988
2. Thakur B. R, Sinha H. C, Agarwal B. L. and Johri V. B,A text book of Algebra, Ram Prasad \& sons, 1970.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://www.youtube.com/watch?v=BydVprh9NgQ
2. https://youtu.be/a05NS7dpbNM

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Mrs. A. GNANASOUNDARI	Name: Dr. V. INTHUMATHI	Name:	Name:
A. Cun Ro:	Vignture:	Signature:	Signature:
Signature:			

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics		
Course Code:	21UMS102		Title		Batch:
		CALCULUS	Semester:	I	
Lecture Hrs./Week or Practical Hrs./Week	6		Credits:	5	

Course Objective

This paper enables the students to gain the ability to solve the problems related to multiple integrals, Beta and Gamma functions. It also provides the basic knowledge about Laplace transforms and use it to solve the differential equations.

Course Outcomes (CO)

On successful completion of this core paper, the students will be able to

CO Number	CO Statement	Knowledge Level
CO1	recall the methods of solvingordinary differential equations.	K1
CO2	solve the linear differential equations with constant and variable coefficients.	K3
CO3	compute area and volume of the solids using multiple integrals	K 3
CO4	analyze and apply the concepts of Laplace Transform, inverse Laplace Transform to solve linear ordinary differential equations with constant coefficients.	K 4
CO5	expose differential equation as a powerful tool in solving problems in Physical and Social sciences.	K 3

Mapping

| $\mathbf{P O} / \mathbf{P S O}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO | PO1

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Linear differential equations with constant coefficients: Differential equation of higher order- The operators D and D-1 - Particular integral - Special methods of finding particular integral - Linear equations with variable coefficients - To find the particular integral - Special method of evaluating the P.I. when X is of the form xm . Text Book 2: Chapter 2: Sections: 1-4 \& 8.	15
Unit II	Partial Differential Equations: Derivation of partial differential equations by elimination of arbitrary constants and by arbitrary functions - Different integrals of partial differential equations - Solutions of partial differential equations in some simple cases - Standard types of first order equations (Type IV - Self study) - Lagrange's equation Text Book 2 : Chapter 4: Sections: 1-6.	16
Unit III	Multiple Integrals: Definition of double integral - Evaluation of the double integral - Double integral in polar co-ordinates - Triple integrals Applications of multiple integrals (problems only) Text Book 1 : Chapter 5: Sections: 1 - 5.	15
Unit IV	Change of Variables: Jacobians - Two important results regarding Jacobians Change of variable in the case of two variables - Change of variable in the case of three variables - Transformation from Cartesian to polar co-ordinates Transformation from Cartesian to spherical polar co-ordinates. Beta and Gamma Functions: Definitions - Convergence of Gamma functions Properties of Beta functions - Relation between Beta and Gamma functions Examples - Applications of Gamma functions to multiple integrals. Text Book 1 : Chapter 6 Chapter 7: Sections 2-6.	16
Unit V	The Laplace Transforms: Definitions - Transform of $\mathrm{f}(\mathrm{t}), e^{a t}, \cos$ at, \sin at and tn when n is an integer - Using Laplace transforms to evaluate integreals Inverse Laplace transforms (Self study)- Finding the Laplace transforms of functions to get the inverse transforms of functions--Laplace transforms to solve ordinary differential equation with constant coefficients. Text Book 2: Chapter 5: Sections 1,2,4-8.	16
	Total Contact Hrs.	78

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.
Assessment Methods:
Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Books:

1. Narayanan S. and Manicavachagom Pillay T.K, Calculus Volume - II, S. Viswanathan (Publishers and Printers), 2010.
2. Narayanan S. and Manicavachagom Pillay T. K, Calculus Volume - III, S. Viswanathan (Publishers and Printers), 2010.

Books for Reference:

1. Dass H. K., Advanced Engineering MathematicsS. Chand and Company Ltd, Sixteenth Edition, New Delhi, 2006.
2. Kandasamy P. and Thilagavathi K., Allied Mathematics (Volume-II), S. Chand and company Ltd, New Delhi, 2004.
3. Kandasamy P. and Thilagavathi K., Allied Mathematics (Volume-III), S. Chand and company Ltd, New Delhi, 2004

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. http://www.math.odu.edu/~ihh/Volume-2.PDF
2. https://nptel.ac.in/courses/111/105/111105122/
3. https://nptel.ac.in/courses/111/107/111107108/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. N. SELVANAYAKI	Name: Dr. V. INTHUMATHI	Name:	Name:
SaluQhi.	Signature:	Signature:	Signature:
Signature:			

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS1A1		Batch:	$2021-2024$
		MATHEMATICAL STATISTICS- I	Semester:	I
Lecture Hrs./Week or Practical Hrs./Week	6		5	

Course Objectives

The aim of this course is to introduce the concept of discrete and continuous random variables, probability functions, expectations, moment generating functions and some discrete and continuous distributions and should have developed skills to apply them to various real life situations.

Course Outcomes (CO)

On successful completion of this core paper, the students will be able to

CO Number	CO Statement	Knowledge level
CO1	understand the concepts of random variables and probability distributions in two dimensional space.	K 2
CO2	compute expected value and variance of discrete and continuousrandomvariables.	K 3
CO3	understand and analyze the discrete distributions such as Binomial and Poisson distributions.	K 4
CO4	analyze the continuous distributions such as normal, beta, gamma, exponential and rectangular distributions	K 4
CO5	use statistical tool effectively to analyze real life problems and to be an efficient statistician.	K 4

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	H	M	H	M	H	H
$\mathbf{C O 2}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
	Random Variables and Distribution Functions: Two Dimensional Random Variables - Two Dimensional or Joint Probability Mass Function - Two Dimensional Distribution function - Marginal Distribution functions - Joint Density function - Marginal Density Function - The conditional Distribution Function and Conditional Probability Density function - Simple problems. Chapter 5: Sections: 5.5, 5.5.1 - 5.5.5. Mathematical Expectation: Introduction - Mathematical Expectation or Expected value of Random variable - Expected value of function of a Random variable - Properties of Expectation. Chapter 6: Sections: 6.1-6.4.	
Unit II	16	
Unit IV		
Mathematical Expectation: Properties of Variance - Covariance - Variance of a linear combination of Random variables - Moments of Bivariate Probability Distributions - Conditional Expectation and Conditional Variance - Simple problems. Chapter 6: Sections: 6.5, 6.6, 6.6.1, 6.8, 6.9. Moment Generating Functions: Moment Generating Functions - Properties of Moment Generating Functions - Uniqueness Theorem of Moment Generating Functions - Cumulants - Properties of Cumulants (Self study) - Simple problems. Chapter 7: Sections: 7.1, 7.1.2, 7.1.3, 7.2, 7.2.1.	15	
	Special Continuous Probability Distributions: Normal distribution - Chief Characteristics of the Normal Distribution - M.G.F. of Normal distribution - C.G.F. of Normal distribution - Moments of Normal Distribution - A linear combination of independent normal variates - Simple problems. Rectangular	

	distribution - Moments of Rectangular distribution - MGF of Rectangular distribution - Characteristic function of Rectangular distribution - Mean Deviation about Mean -Simple problems. Chapter 9: Sections: 9.2, 9.2.2, 9.2.5, 9.2.6, 9.2.7, 9.2.8, 9. 3-9.3.4.	
	Special Continuous Probability Distributions: Gamma Distribution - M.G.F. of Gamma distribution - C.G.F. of Gamma distribution - Additive property of Gamma Distribution - Beta distributions of first kind - Constants of Beta distributions of first kind - Beta distributions of second kind - Constants of Beta distributions of second kind - Exponential distribution - M.G.F. of Exponential distribution - Simple problems. Chapter 9: Sections: 9.5-9.5.3, 9.6, 9.6.1, 9.7, 9.7.1, 9.8, 9.8.1.	16
	Total Contact Hrs.	$\mathbf{7 8}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Gupta S. C. and Kapoor V. K., Fundamentals of Mathematical Statistics, Eleventh Edition S.Chand \& Sons, 2009.

Books for Reference:

1. Hogg R.V. and Craigh A. G., Introduction to Mathematical Statistics, Pearson Education publications, 2004.
2. Veerarajan T., Fundamentals of Mathematical Statistics, Yes Dee Publishing Pvt.Ltd, 2017.
3. Vital P. R., Mathematical Statistics, Margham publications, 2004.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-ma08/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. M. MAHESWARI M.Mallel:	Name: Dr. V. INTHUMATHI Signature:	Name:	Name:
Signature:			

Programme Code:	B.Sc.	ProgrammeTitle :	Mathematics	
Course Code:	21 UCY1A1	Title	Batch :	2021-2024
		ANCILLARY MATHEMATICS FOR CHEMISTRY-I	Semester	I
Hrs/Week	8		Credits :	4

Unit -1

Symmetric and Skew - Symmetric matrices - Hermitian and Skew - Hermitian matrices - Orthogonal and unitary matrices - Characteristic Equation of a matrix - Cayley-Hamilton's theorem (without proof) Simple Problems.
Chapter 5: Sections: 5.8-5.23 and 5.50-5.67.
(Pg. No.: 5.8 to 5.23 and 5.50 to 5.67)[22 Hours]
Unit -2
Fundamental theorem in the theory of Equations - Relation between the roots and
co-efficient of an Equation - Imaginary and Irrational roots.
Chapter 6: Sections: 6.1-6.17 and 6.19-6.25.
(Pg. No.: 6.1 to 6.17 and 6.19 to 6.25) [22 Hours]
Unit $\mathbf{- 3}$
Reciprocal Equation - Diminishing the roots of an Equation - Removal of term - Simple Problems.
Chapter 6:Sections: 6.30-6.36 and 6.49-6.55.
(Pg. No. : 6.30 to 6.36 and 6.49 to 6.55)[21 Hours]
Unit -4
Summation of Binomial Series - Exponential series - Simple Problems.
Chapter 2: Sections: 2.4-2.10, Chapter 3 Sections: 3.1-3.9.
(Pg. No. : 2.4 to 2.10 and 3.1 to 3.9) [19 Hours]
Unit -5
Beta, Gamma Functions - Simple Problems.
Chapter 30 :Sections: 30.1-30.23.(Pg. No. : 30.1 to 30.23)[20 Hours]

Text Book:

Dr. Vittal P. R, Allied Mathematics, Fourth Edition, Margham Publications, Chennai, 2010.

Books for Reference :

Frank Ayres, Shaum's outline of theory and problem of matrices.

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Mr. P. SIRAVANAN	Name: Dr. V. InTHUMATHI Signature:	Name:	Name:
Signature:			

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UPS1A1	Title	Batch :	2021-2024
		ANCILLARY MATHEMATICS FOR PHYSICS - I	Semester	I
Hrs/Week	8		Credits :	4

Unit -1
Symmetric and Skew-Symmetric matrices - Hermitian and Skew - Hermitian matrices - Orthogonal and unitary matrices - Characteristic Equation of a matrix - Cayley-Hamilton's theorem (without proof) Simple Problems.
Chapter 5: Sections: 5.8-5.23 and 5.50-5.67.
(Pg. No : 5.8 to $\mathbf{5 . 2 3}$ and 5.50 to 5.67) [23 Hours]
Unit -2
Fundamental theorem in the theory of Equations - Relation between the roots and co-efficient of an
Equation - Imaginary and Irrational roots.
Chapter 6: Sections: 6.1-6.17 and 6.19-6.25.
(Pg. No. : 6.1 to 6.17 and 6.19 to 6.25)[22 Hours]
Unit $\mathbf{- 3}$
Reciprocal Equation - Diminishing the roots of an Equation - Removal of term - Simple Problems.
Chapter 6: Sections: 6.30-6.36 and 6.49-6.55.
(Pg. No. : 6.30 to 6.36 and 6.49 to 6.55) [21 Hours]
Unit -4
Logarithmic series - Binomial series - Simple Problems.
Chapter 4: Sections: 4.1-4.11
Chapter 2 :Sections: 2.4-2.10(Pg. No. : 4.1 to 4.11 and 2.4 to 2.10)[19 Hours]
Unit -5
Beta, Gamma Functions - Simple Problems.
Chapter 30: Sections: 30.1-30.23. (Pg. No. : 30.1 to 30.23)[19 Hours]
Text Book:
Vittal P. R, Allied Mathematics, Fourth Edition, Margham Publications, Chennai, 2010.
Books for Reference :
Frank Ayres, Shaum's outline of theory and problem of matrices.

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Mr. P. SIRAVANAN	Name: Dr. V. InTHUMATHI Signature:	Name:	Name:
Signature:	Signature:	Signature:	

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS203		Batch:	$2021-2024$
		5	TRIGONOMETRY, VECTORCALCUL US AND FOURIER SERIES	Sremester:
Lecture Hrs./Week or Practical Hrs./Week		II		

Course Objective

This paper enables the students to provide basic knowledge of trigonometry, vector calculus and Fourier series.

Course Outcomes (CO)

On successful completion of this course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	recall the basic concepts of vector analysis, trigonometry, differentiation and integration.	K 1
CO 2	apply the differential operator to solve vector differential equations.	K 3
CO 3	solve the multiple integrals by applying Gauss divergence theorem, Stoke's theorem and Green's theorem.	K 3
CO 4	compute the expansion of trigonometric function as multiple of θ and a series of powers of θ.	K 3
CO 5	find Fourier series expansion for odd and even functions of a given period and can apply to solve problems in mathematical physics.	K 3

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	M	M	M	H	M	M	H	H
$\mathbf{C O 2}$	H	M	H	H	H	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
	Expansions and Inverse circular functions: Expansions of cos n θ and $\sin n \theta-$ Expansions of cos n日 and sin n日 - Power series for sin x and cos x - Trigonometric equations - Relations among inverse functions - Related problems. Text Book 1: Chapter 3: Sections: 1-5.	14
Unit II	Circular and Hyperbolic Functions: Exponential function - Circular functions - hyperbolic functions - Relations between circular and hyperbolic functions - Peroid of function - Inverse hyperbolic functions. Text Book 1: Chapter 6: Sections: 6.1 - 6.6.	13
	Fourier Series: Definition - Finding Fourier co-efficient for given periodic functions with period 2 and 2l - Even and odd functions - Half range series. Text Book 2: Chapter 6: Sections: 1 - 6.1.	13
Unit IV	Vector differentiation: Gradient, Curl and Divergence- Scalar and vector point functions - Level surface - Gradient of a scalar point function - Directional derivative of a scalar point function - Theorems (statement only) - Equations of tangent plane and normal line to a level surface (Self study) - Divergence and curl of a vector point function - Solenoidal vector - Irrotational vector - Vector identities. Text Book 3: Chapter 1.	12
Unit V	Vector integration: Line integral - Theorems on line integrals - Surface and Volume integrals - Gauss Divergence theorem - Stoke's theorem - Green's theorem in plane. (Statement only and relevant problems). Text Book 3: Chapter 2.	13
	Total Contact Hrs.	65

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.
Assessment Methods:
Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

1. Duraipandian P, Laxmi Duraipandian and Jayamala paramasivan, Trigonometry, Emerald Publishers, 1999.
2. Narayanan S., Manicavachagom Pillay T. K., Calculus Volume III, Viswanathan S (Publishers and Printers), 2010.
3. Vittal P. R. and Malini V., Vector Analysis, Margham Publication, 1997.

Books for Reference:

1. Gupta R., Vector Calculus, Firewall Media, 2005.
2. Narayanan S. and Manicavachagom pillay T. K., Trigonometry, Viswanathan S (Publishers and Printers), 2012.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://nptel.ac.in/courses/111/105/111105122/
2. http://www.math.odu.edu/~jhh/Volume-2.PDF
3. https://www.whitman.edu/mathematics/calculus_online/chapter16.html
4. \quad https://nptel.ac.in/courses/111/107/111107108/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. N.SELVANAYAKI Signature:	Name: Dr. V. INTHUMATHI \qquad Signature:	Name: Signature:	Name: Signature:

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS204	Title	Batch:	$2021-2024$
		ANALYTICAL	Semester:	II
Lecture Hrs./Week or Practical Hrs./Week	5		Credits:	4

Course Objective

This paper enables the student to gain fundamental ideas about co-ordinate geometry and gives clear knowledge about regular geometrical aspects and their properties in two and three dimensions.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	recollect the basic properties of circle, sphere, parabola and hyperbola and can able to gain a deep knowledge in it.	K1
CO 2	understand the ideas about the relation between polar and cartesian co-ordinates of geometric figures in solving simple problems.	K2
CO3	compute the equations of a chord to a circle and common tangents to a circle.	K3
CO 4	solve problems relating to right circular cone, enveloping cone and general quadric cone.	K3
CO5	apply in real life problems in physics, engineering and computer graphics.	K3

Mapping

CO PO/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 2}$	H	H	H	H	H	M	H	H	H
$\mathbf{C O 3}$	H	H	H	H	M	M	H	H	H
$\mathbf{C O 4}$	H	H	H	H	M	M	H	H	H
$\mathbf{C O 5}$	H	H	H	H	M	M	M	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
	Circle - Common tangents to two circles (self study). Text book 1: Chapter 4: Sections: 4.10-4.14. Parabola Text book 1: Chapter 6: Sections: 6.5-6.7. Ellipse Text book 1: Chapter 7: Sections: 7.6-7.8. Hyperbola - Some properties of the asymptotes(self study). Text book 1: Chapter 8: Sections: 8.4-8.6.	13
Unit II	Polar Equations Text book 1: Chapter 9: Sections: 9.1-9.15.	13
Unit III	Sphere Text book 2: Chapter 4: Sections: 4.1- 4.8.	13
Unit IV	Cone, Cylinder and Central quadrics Text book 2: Chapter 5: Sections: 5.1 - 5.7.	14
Unit V	Cone, Cylinder and Central quadrics Text book 2: Chapter 5: Sections: 5.8-5.13	12
	Total Contact Hrs.	65

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

1. Manicavachagom Pillai T. K, Natarajan T, A text book of Analytical Geometry part-I two dimensions, S. Viswanathan printers \& publishers Pvt. Ltd, 2018.
2. Manicavachagom Pillai T. K, Natarajan T, A text book of Analytical Geometry part-I three dimensions, S. Viswanathan printers \& publishers, Pvt. Ltd, 2019.

Books for Reference:

1. Duraipandian P., LaxmiDuraipandian, Muhilan D, Analytical Geometry 2 dimensional, Emerald publishers, 2000.
2. Duraipandian P., LaxmiDuraipandian, Muhilan D, Analytical Geometry 3 dimensional, Emerald publishers, 2000.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://www.youtube.com/watch?v=TpTA-xW2oq4
2. https://www.youtube.com/watch?v=cStx9_eWD5Y
3. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{a} 2 \mathrm{mt} 2 \mathrm{~L} 0 \mathrm{e} 06 \mathrm{Y}$

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. R. SANTHI Name: Dr. V. InTHUMATHI Name: RQ Signature: Signature:	Name:		

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS2A2		Batch:	$2021-2024$
		MATHEMATICAL	Semester:	II
Lecture Hrs./Week or Practical Hrs./Week	6	STATISTICS - II	Credits:	5

Course Objective

The objective of this paper is to introduce the concepts about correlation, regression, sample theory, sampling distributions and theory of estimation.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	understand the basics of regression line and the principles of least squares.	K 2
CO 2	apply the concept of correlation and rank correlation in real life situations.	K 3
CO 3	analyze the concepts of sampling techniques and procedure for testing of hypothesis for large samples.	K 4
CO 4	apply chi square, t and F distributions for testing of attributes as well apply the Cramer Rao- inequality for estimation.	K 3
CO 5	find good estimators for an unknown parameter using estimation theory	K 3

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	M	H	H	H	H	H
$\mathbf{C O 2}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Correlation: Introduction - Meaning of correlation - Scatter diagram Karl Pearson's coefficient of Correlation - Limits for Correlation Coefficient - Calculation of the Correlation Coefficient for a Bivariate Frequency Distribution - Rank Correlation - Spearmen's Rank Correlation Coefficient problems only (no derivations). Chapter 10: Sections: 10.1, 10.2, 10.3, 10.4, 10.4.1, 10.5, 10.7, 10.7.1. Linear Regression: Introduction - Linear Regression - Regression Coefficients - Properties of Regression Coefficients- Angle between two Lines of Regression (Self study) - Simple Problems. Chapter 11: Sections: 11.1, 11.2, 11.2.1, 11.2.2, 11.2.3.	16
Unit II	Large Sample Theory: Introduction - Types of sampling - Purposive sampling -Random Sampling - simple sampling - Stratified sampling Parameter and Statistic - Sampling Distribution of a Statistic - Standard Error - Tests of Significance - Null and alternative Hypothesis - Errors in sampling - Critical Region and Level of Significance - One-tailed and Twotailed tests - Critical Values or Significant Values - Procedure for Testing of Hypothesis - Tests of Significance for Large Samples - Sampling of Attributes - Test of significance for Single Proportion - Test of significance for Difference of Proportions - Simple Problems. Chapter 14 : Sections: 14.1, 14.2, 14.2.1, 14.2.2, 14.2.3, 14.2.4, 14.3, 14.3.1, 14.3.2, 14.4, 14.4.1-14.4.5, 14.5, 14.6, 14.7, 14.7.1, 14.7.2.	16
Unit III	Large Sample Theory: Sampling of Variables - Test of significance for Single Mean - Test of significance for Difference of Means (Self study)Simple Problems. Chapter: 14 : Sections: 14.8, 14.8.3, 14.8.4. Chi - square (χ_{2}) Distribution: Applications of Chi- square Distribution Inferences about a Population Variance - Goodness of Fit Test - Test of Independence of Attributes-- Contingency Tables - Simple Problems. Chapter 15: Sections: 15.6, 15.6.1, 15.6.2, 15.6.3.	15
Unit IV	t, F and z Distributions: Applications of t -Distribution - t -test for Single Mean - t -test for Difference of Means - t -test for Testing the Significance of an Observed Sample Correlation Coefficient - Applications of F-Distribution - F-test for Equality of Two Population Variances - Simple Problems. Chapter 16: Sections: 16.3, 16.3.1, 16.3.2, 16.3.4, 16.6, 16.6.1.	16
Unit V	Theory of Estimation: Introduction - Characteristic of estimators Unbiasedness -Consistency - Efficient estimators - Sufficiency - CramerRao inequality - Simple problems - Methods of estimation - Method of maximum likelihood estimation - Properties of maximum Likelihood Estimators - Method of moments - Simple Problems. Chapter 17: Sections: 17.1, 17.2, 17.2.1, 17.2.2, 17.2.3, 17.2.4, 17.3, 17.6, 17.6.1, 17.6.3.	15
	Total Contact Hrs.	78

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Gupta S. C and Kapoor V. K., Fundamentals of Mathematical Statistics, Eleventh edition, S. Chand \& Sons, New Delhi,2009.

Books for Reference:

1. Hogg R. V and Craigh A. G., Introduction to Mathematical Statistics, Pearson Education publications, 2004.
2. Veerarajan T., Fundamentals of Mathematical Statistics, Yes Dee PublishingPvt.Ltd., 2017.
3. Vital P. R., Mathematical Statistics,Margham publications, 2004.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. http://www.khanacademy.com
2. https://nptel.ac.in/courses/111/105/111105124/
3. https://nptel.ac.in/courses/111/105/111105090/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. N. SELVANAYAKI Salu@li.	Name: Dr. V. INTHUMATHI	Name:	Name:
Signature:	Vignature:	Signature:	Signature:

Programme Code:	B.Sc.	ProgrammeTitle :	Mathematics	
Course Code:	21 UCY2A2	Title	Batch :	$2021-2024$
		ANCILLARY MATHEMATICS FOR CHEMISTRY-II	Semester	II
Hrs/Week	6		Credits :	4

Unit -1

Hyperbolic functions: Relations between circular and hyperbolic functions - Addition formula for hyperbolic functions - Problems.
Chapter 14: Sections: 14.31-14.37\&14.40-14.55
(Pg. No. : 14.31 to14.37 and 14.40 to 14.55)[21 Hours]
Unit -2
Laplace Transforms: Definition - Laplace transform of elementary function - Linear Property Shifting Property - Change of scale property - Laplace transform of derivatives - Laplace transform of integrals - Multiplication by t-problems.
Chapter 27: Sections: 27.1-27.19 (Pg. No. : 27.1 to 27.19)[22 Hours]
Unit -3
Vector Differentiation: Gradient, Curl and Divergence - Problems.
Chapter 28: Sections: 28.7-28.51, 28.23, 28.26-28.33 and 28.36-28.43
(Pg. No.: 28.7 to 28.51, 28.23, 28.26 to 28.33 and 28.36 to 28.43)[21 Hours]
Unit -4
Line Integral - Surface Integral - Volume Integral - Simple Problems.
Chapter 29: Sections: 29.59-29.72 and 29.75-29.87.
(Pg. No. : 29.59 to 29.72 and 29.75 to 29.87).[20 Hours]
Unit -5
Green's theorem (without proof) - Simple Problems.
Chapter 29:Sections: 29.129-29.140
(Pg. No.: 29.129 to 29.140)[20 Hours]

Text Books:

Vittal P. R, Allied Mathematics, Fourth Edition, Margham Publications, Chennai, 2010.

Books for Reference:

1. Murray R. Spiegel, Shaum's outline of theory and problem of vector analysis
2. Murray R. Spiegel, Shaum's outline of theory and problem of Laplace Transform.

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Mr. P. SIRAVANAN	Name: Dr. V. InTHUMATHI	Name:	Name:
Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UCY2A2	Title	Batch:	$2021-2024$
		Programming Lab for Chemistry	Semester:	VI
Lecture Hrs./Week or Practical Hrs./Week	4	Using MATLAB	2	

List of programs:

1. Program for creating a matrix 5×4
2. Program for finding the characteristic equation of the 3×3 matrix
3. Program to illustrate the row vector problem in a given matrix $\left[\begin{array}{ccccc}6 & 43 & 2 & 11 & 87 \\ 12 & 6 & 34 & 0 & 5 \\ 34 & 18 & 7 & 41 & 9\end{array}\right]$
4. Program to illustrate the column vector problem in a given matrix $\left[\begin{array}{ccccc}2 & 4 & 6 & 8 & 10 \\ 3 & 6 & 9 & 12 & 15 \\ 7 & 14 & 2128 & 35\end{array}\right]$
5. Program to illustrate the creation of sub matrix from a given 4×7 matrix
6. Program to finding the eigen values of the 3×3 matrix
7. Program to check the matrix 3×3 is symmetric or skew symmetric

$$
4 x-2 y+6 z=8
$$

8. Program to solve the system of linear equations $2 x+8 y+2 z=4$

$$
6 x+10 y+3 z=0
$$

9. Program to create a 6×6 matrix in which the middle rows and the middle two columns are 1 's and the rest are zeros.
10. The following were the daily maximum temperature (in ${ }^{\circ} \mathrm{F}$) in Washington In during the month of April, 2002: 5873735350485673666963748291938991805969566463 66647463 69, (data from the U.S. National Organic and Atmospheric Administrations). Use relational and logical operations determine the following:
A) The number of days the temperature was above 75°
B) The number of days the temperature was between 65° and 80°
C) The days of the month that the temperature was between 50° and 60°
11. A worker is paid according to his hourly wage up to 40 hours, and 50% more for overtime.

Write a program in a script file that calculates the pay to a worker. The programs ask the user to enter the number of hours and the hourly wage. The program the displays the pay.
12. A vector is given by $V=[5,17,-3,8,0,-1,12,15,20,-6,6,4,-7,16]$. Write a program as a script file that doubles the elements that are positive and are divisible by 3 and/or 5 , and raise to the power of 3 the elements that are negative but greater than -5 .
13. For the polynomial $f(x)=x^{5}-12.1 x^{4}+40.59 x^{3}-17.015 x^{2}-71.95 x+35.88$
a) Calculate $f(9)$
b) Calculate $f(x)$ for $0<=x<=10$
14. Create 3×3 matrix to demonstrate that matrix multiplication is not commutative.
15. Program to find the first and second derivative of $f(x)=x^{5}-12.1 x^{4}+40.59 x^{3}-$ $17.015 x^{2}-71.95 x+35.88$
16. Program to find the first and second derivative of $f(x)=e^{3 x+2}$
17. Program to find the first and second derivative of $f(x)=2+\log x$
18. Program to find $\int_{0}^{\infty} e^{-x^{2}}(\ln x)^{2} d x$
19. Program to find $\int_{0}^{\frac{\pi}{2}} \sin (2 x) d x$
20. Program to find $\int_{-\infty}^{\infty} \frac{1}{a^{2}+x^{2}} d x$
21. Program for divide the polynomial $15 x^{5}+35 x^{4}-37 x^{3}-19 x^{2}+41 x-15$ by polynomial $5 x^{3}-4 x+3$

Text Book:

Amos Gilat, MATLAB - An Introduction with Application, John Wiley \& Sons, Singapore, Third Edition, 2007.

Books for Reference:

1. Etter D. M., Kuncicky D. C. and Moore H., Introduction to MATLAB 7, Prentice Hall, New Jersy, 2009.
2. Palm W. J., Introduction to MATLAB 7 for Engineers, McGraw-Hill Education, New York, 2005.
3. Prata R. P., Getting Started with MATLAB - A Quick Introduction for Scientist and Engineers, Oxford University Press, New Delhi, 2010.

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Dr. N. SELVANAYAKI	Name: Dr. V.INTHUMATHI	Name:	Name:
Signature:	V. Sthemeth:		
	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	ProgrammeTitle :	Mathematics	
Course Code:	21UPS2A2	Title	Batch :	$2021-$ 2024
		ANCILLARY MATHEMATICS FOR PHYSICS-II	Semester	II
Hrs/Week	6		Credits :	4

Unit -1

Hyperbolic functions: Relations between circular and hyperbolic functions - Addition formula for hyperbolic functions - Problems.
Chapter 14: Sections: 14.1-14.37 and 14.40-14.57.
(Pg. No. : 14.1 to 14.37 and 14.40 to 14.57)[21 Hours]
Unit -2
Laplace Transforms: Definition - Laplace transform of elementary function - Linear Property Shifting Property - Change of scale property - Laplace transform of derivatives - Laplace transform of integrals - Multiplication by t-Problems.
Chapter 27: Sections: 27.1-27.19. (Pg. No. : 27.1 to 27.19).[22 Hours]
Unit -3
Vector Differentiation: Gradient, Curl and Divergence - Simple Problems.
Chapter 28: Sections: 28.8-28.51. (Pg. No. : 28.8 to 28.51).[21 Hours]
Unit -4
Line Integral - Surface Integral - Volume Integral - Simple Problems.
Chapter 29: Sections: 29.59-29.72 and 29.75-29.87.
(Pg. No. : 29.59 to 29.72 and 29.75 to 29.87).[20 Hours]
Unit -5
Exponential series-simple problems.
Chapter 3: Sections:3.1 to 3.9
(Pg. No. : 3.1 to 3.9).[20 Hours]

Text Book:

Vittal P. R, Allied Mathematics, Fourth Edition, Margham Publications, Chennai, 2010.
Books for Reference:

1. Murray R. Spiegel, Shaum's outline of theory and problem of vector analysis.
2. Murray R. Spiegel, Shaum's outline of theory and problem of Laplace transform.

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Mr. P. SIRAVANAN	Name: Dr. V. InTHUMATHI	Name:	Name:
Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UPS2A2	Title	Batch:	$2021-2024$
		Programming Lab for Physics using MATLAB	Semester:	VI
Lecture Hrs./Week or Practical Hrs./Week	4	2		

List of programs:

22. Program for creating a matrix 5×4
23. Program for finding the characteristic equation of the 3×3 matrix
24. Program to illustrate the row vector problem in a given matrix $\left[\begin{array}{ccccc}6 & 43 & 2 & 11 & 87 \\ 12 & 6 & 34 & 0 & 5 \\ 34 & 18 & 7 & 41 & 9\end{array}\right]$
25. Program to illustrate the column vector problem in a given matrix $\left[\begin{array}{ccccc}2 & 4 & 6 & 8 & 10 \\ 3 & 6 & 9 & 12 & 15 \\ 7 & 14 & 2128 & 35\end{array}\right]$
26. Program to illustrate the creation of sub matrix from a given 4×7 matrix
27. Program to finding the eigen values of the 3×3 matrix
28. Program to check the matrix 3×3 is symmetric or skew symmetric

$$
\begin{gathered}
4 x-2 y+6 z=8 \\
2 x+8 y+2 z=4 \\
6 x+10 y+3 z=0
\end{gathered}
$$

29. Program to solve the system of linear equations $2 x+8 y+2 z=4$
30. Program to create a 6×6 matrix in which the middle rows and the middle two columns are 1 's and the rest are zeros.
31. The following were the daily maximum temperature (in ${ }^{\circ} \mathrm{F}$) in Washington In during the month of April, 2002: 5873735350485673666963748291938991805969566463 66647463 69, (data from the U.S. National Organic and Atmospheric Administrations). Use relational and logical operations determine the following:
D) The number of days the temperature was above 75°
E) The number of days the temperature was between 65° and 80°
F) The days of the month that the temperature was between 50° and 60°
32. A worker is paid according to his hourly wage up to 40 hours, and 50% more for overtime. Write a program in a script file that calculates the pay to a worker. The programs ask the user to enter the number of hours and the hourly wage. The program the displays the pay.
33. A vector is given by $V=[5,17,-3,8,0,-1,12,15,20,-6,6,4,-7,16]$. Write a program as a script file that doubles the elements that are positive and are divisible by 3 and/or 5, and raise to the power of 3 the elements that are negative but greater than -5 .
34. For the polynomial $f(x)=x^{5}-12.1 x^{4}+40.59 x^{3}-17.015 x^{2}-71.95 x+35.88$
c) Calculate $f(9)$
d) Calculate $f(x)$ for $0<=x<=10$
35. Create 3×3 matrix to demonstrate that matrix multiplication is not commutative.
36. Program to find the first and second derivative of $f(x)=x^{5}-12.1 x^{4}+40.59 x^{3}-$ $17.015 x^{2}-71.95 x+35.88$
37. Program to find the first and second derivative of $f(x)=e^{3 x+2}$
38. Program to find the first and second derivative of $f(x)=2+\log x$
39. Program to find $\int_{0}^{\infty} e^{-x^{2}}(\ln x)^{2} d x$
40. Program to find $\int_{0}^{\frac{\pi}{2}} \sin (2 x) d x$
41. Program to find $\int_{-\infty}^{\infty} \frac{1}{a^{2}+x^{2}} d x$
42. Program for divide the polynomial $15 x^{5}+35 x^{4}-37 x^{3}-19 x^{2}+41 x-15$ by polynomial $5 x^{3}-4 x+3$

Text Book:

Amos Gilat, MATLAB - An Introduction with Application, John Wiley \& Sons, Singapore, Third Edition, 2007.

Books for Reference:

4. Etter D. M., Kuncicky D. C. and Moore H., Introduction to MATLAB 7, Prentice Hall, New Jersy, 2009.
5. Palm W. J., Introduction to MATLAB 7 for Engineers, McGraw-Hill Education, New York, 2005.
6. Prata R. P., Getting Started with MATLAB - A Quick Introduction for Scientist and Engineers, Oxford University Press, New Delhi, 2010.

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Dr. N. SELVANAYAKI	Name: Dr. V.INTHUMATHI	Name:	Name:
Signature:	V. Sthemeth:		
	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS305		Batch:	$2021-2024$
		DYNAMICS	Semester:	III
Lecture Hrs./Week or Practical Hrs./Week	5			

Course Objective

This course provides a thorough knowledge about the characteristics of Projectiles, Energies during impact and Collision. Each topic involves problems to solve which develops the application skills and thinking process of the students.

Course Outcomes (CO)

On successful completion of this course, the students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	recall the notions of matter, velocity, acceleration, force, momentum, moment of inertia etc.,	K 1
CO 2	understand the concept of projectile motion and solving some simple problems related to it.	K 2
CO 3	calculate radial and transverse components of velocity and acceleration, areal velocity of central orbits, describe the differential equation and pedal equation of central orbits.	K 3
CO 4	apply the concepts of composition of simple harmonic motion in two directions.	K 3
CO 5	 oblique impact of elastic bodies under collision and solve simple problems.	K 4

Mapping

CO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	M	M	M	H	H	M	H	H
$\mathbf{C O 2}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Projectiles - Simple problems. Chapter 6 :Sections : 6.1 - 6.15.	13
Unit II	Simple Harmonic Motion - Simple problems. Chapter 10: Sections: 10.6 - 10.11.	12
Unit III	Motion under the action of central forces - Differential Equations of central orbits (Self study) - Simple problems. Chapter 11: Sections: 11.1 - 11.13.	14
Unit IV	Impulsive forces - Simple problems. Chapter 7: Sections: 7.1 - 7.6.	13
Unit V	Collision of elastic bodies -. Compression and Restitution (Self study) - Simple problems. Chapter 8: Sections: 8.1 - 8.8.	13
	Total Contact Hrs.	$\mathbf{6 5}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Venkataraman M. K, Dynamics, Thirteenth Edition, Agasthiar publications, 2009.

Books for Reference:

1. Dharmapadam A. V, Dynamics, S. Viswanathan Printers and Publishers Pvt. Ltd, Chennai, 1998.
2. ViswanathNaik K and Kasi M. S, Dynamics, Emerald Publishers, 1992.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://youtu.be/uM2HpLBVAkA
2. https://youtu.be/glsXr4SpOMQ
3.https://youtu.be/pZZt357pk-I

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Mrs. A.GNANASOUNDARI	Name: Dr. V. InTHUMATHI	Name:	Name:
A.Combo. Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21 UMS306		Batch:	$2021-2024$
		NUMERICAL		
Lecture Hrs./Week or Practical Hrs./Week	4	SECHNIQUES	Credits:	3

Course Objective

This course helps the students to have an in-depth knowledge of various advanced methods in numerical analysis. The students to use numerical techniques to get numerical solutions of equations like transcendental and non-linear differential equations when ordinary analytical methods fail.

Course Outcomes (CO)

On successful completion of this core paper, the students will be able to

CO Number	CO Statement	Knowledge Level
CO1	understand the need of numerical analysis techniques in the areas of approximation theory, and recall some basic concepts.	K1
CO2	apply the numerical methods for approximating the solution to problems of algebraic and transcendental equations, simultaneous linear equations.	K3
CO3	estimating the value of a function for any intermediate value of the independent variable using Newton Forward and Backward interpolation Formula as well compute the derivatives using Newton's forward and backward difference formula and Sterling's formula.	K3
CO4	solve the ordinary and partial differential equations by using Numerical method techniques like Taylors method, Euler's method, RungeKutta method etc.	K 4
CO5	enrich the knowledge of numerical techniques and getting insight of algorithmic approach.	K 4

Mapping

$\mathbf{P O} / \mathbf{P S O}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	M	M	M	M	H	M
$\mathbf{C O 2}$	H	H	H	H	M	M	M	H	M
$\mathbf{C O 3}$	H	H	H	H	H	H	H	H	M
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	M
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit II	The solution of Numerical Algebraic and Transcendental Equations: Introduction - The Bisection method - The iteration method - The method of false position (Regula Falsi Method) - Newton Raphson method. Chapter 3: Sections: 1-5. Simultaneous Linear Algebraic Equations: Introduction - Gauss Elimination Method - Gauss Jordan Method - Computation of the inverse of a Matrix using Gauss's Elimination Method. Chapter 4: Sections: 1-3.	11
	Simultaneous Linear Algebraic Equations: Iterative Methods - Gauss-Jacobi Method - Gauss-Seidal Method - Comparison of Gauss elimination and Gauss-Seidal Iteration methods (Self study). Chapter 4: Sections: 6, 7. Interpolation: Introduction - Linear interpolation - Gregory Newton Forward and Backward interpolation Formula - Equidistant terms with one or more missing values. Chapter 6: Sections: 1 - 5.	10
	Numerical Differentiation: Introduction - Newton's forward difference formula to compute the derivatives - Newton's backward difference formula to compute the derivatives - Derivatives using Stirling's formula. Chapter 9: Sections: 1 - 4.	
Numerical Integration: The Trapezoidal rule - Romberg's method - Simpson's one third rule - Practical applications of Simpson's rule. Chapter 9: Sections: 8 -10 and 12.	10	

Unit IV Numerical Solution of Ordinary Differential Equations: Solution by Taylor Series - Taylor Series method for higher order differential equations- Euler's method - Improved Euler's method - Modified Euler method - RungeKutta method - Second order RungeKutta Method - Higher order RungeKutta methods (Self study). Chapter 11: Sections: 6, 8, 10 - 15.	10	
	Numerical Solution of Partial Differential Equations: Elliptic equations - Solution of Laplace's equation by Iteration - Poisson's equation. Chapter 12: Sections: 5, 6, 7.	11
	Total Contact Hrs.	$\mathbf{5 2}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Venkataraman M. K, Numerical Methods in Science and Engineering, The National Publishing Company, Madras, 2009.

Books for Reference:

Kandasamy P, Thilagavathy K and Gunavathi K, Numerical Methods, S. Chand company Ltd, 2012.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

https://nptel.ac.in/courses/111/107/111107105/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. R. SANTHI	Name: Dr. V. InTHUMATHI	Name:	Name:
$R Q$	Signature:	Signature:	Signature:
Signature:			

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS3N1	Title	Batch:	$2021-2024$
		NME: QUANTITATIVE APTITUDE - I	Semester:	III
Lecture Hrs./Week or Practical Hrs./Week	1	2	2	

Course Objective

The objective of this syllabus is to make the students to clear competitive examination like Banking recruitment, Postal recruitment, Railway recruitment and TNPSC exams.

Course Outcomes (CO)
On successful completion of this course, the students will be able to

CO Number	CO Statement	Knowledge Level
CO1	recall the necessary fundamentals to take up the course	K2
CO 2	 proportion.	K3
CO 3	apply the concepts of probability, permutations and combinations in solving real life problems.	K 3
CO 4	develop logical thinking, problem solving skills and time management.	K 4
CO 5	clear competitive exams in banking, Postal and railway services, IT, etc..	K 4

Mapping

$\mathbf{P O} / \mathrm{PSO}$									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	M	H	M	M	M	M	H
$\mathbf{C O 2}$	H	M	M	H	M	M	M	M	H
$\mathbf{C O 3}$	H	H	M	H	M	M	M	M	H

CO4	H	H	M	H	M	M	M	M	H
CO5	H	H	M	H	M	M	M	M	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Percentage: Introduction - Important facts and family - Concept of percentage - Simple problems. Chapter 10 Simplification: Introduction - BODMAS rule - Simple problems. Chapter 4	3
Unit II	Ratio and Proportion: Ratio - Proportion - Simple problems. Chapter 12:	3
Unit III	Profit and loss: Introduction - Cost price - Selling price - Profit and loss - Simple Problems. Chapter 11	2
Unit IV	Permutations and Combinations: Factorial Notation - Permutations - Combinations. Chapter 30	3
Unit V	Probability: Sample Space - Results on probability. Chapter 34	2
	Total Contact Hrs.	$\mathbf{1 3}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Aggarwal R. S, Quantitative Aptitude, S. Chand \& Company Ltd, Ram Nagar, New Delhi, 2013.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://youtu.be/2_XXuqkJFgs
2. https://youtu.be/g_Fahsgyn-Q

Course Designed by	Verified by HOD	Checked by	Approved	
Name and Signature	Name with Signature	CDC	COE	
Name: Mrs. M.AMSAVENI Signature:	Name: Dr. V. INTHUMATHI \qquad Signature:	Name: Signature:	Name: Signature:	
Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS3N2	Title	Batch:	2021-2024
		NME: ASTRONOMY- I	Semester:	III
Lecture Hrs./Week or Practical Hrs./Week	1		Credits:	2

Course Objective

This paper enables the learners to gain basic knowledge of the Solar System and the Milky Way.

Course Outcomes (CO)

On successful completion of this core paper, the students will be able to

CO Number	CO Statement	Knowledge Level
CO1	understand the concept of the Solar System.	K 2
CO 2	become familiar with the Double \& Multiple stars.	K 2
CO 3	acquire the knowledge in the Milky Way.	K 3
CO 4	know the various constellations.	K 4
CO 5	analyze the concepts of Seasonal changes	K 4

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	H	M	M	H	M	M	M	M	M
CO2	M	M	M	M	M	M	M	M	M

CO3	M	M	M	H	M	M	M	M	M
$\mathrm{CO4}$	M	M	M	H	M	M	M	M	M
$\mathrm{CO5}$	M	M	M	H	M	M	M	M	M

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	The Solar System: Introduction - The Sun - Mercury - Venus - Mars - Asteroids - Jupiter - Saturn - Uranus - Neptune. Chapter 16: Sections: 316 - 326.Pg.No : 455 - 467	3
Unit II	The Solar System: Comets - Meteors - Zodiacal light. Chapter 16 Sections: 327 - 329.Pg.No : 467-472	3
Unit III	Novae - Star clusters Nebulae - Constellations - Zodiacal Constellations. Variables Cepheid variales - Long period variables Irregular variales - Chapter 17: Sections: 339 - 345.Pg.No : 481 -489	2
Unit IV	The Milky Way: Introduction - Seasonal changes in the night sky - The winter Constellations - The spring Constellations. Chapter 17: Sections: 346 - 347.Pg.No : 489 - 497	3
Unit V	Constellations: Introduction - The summer Constellations - The autumn Constellations. Chapter 17: Section: 347.Pg.No : 497 - 504	2
	Total Contact Hrs.	$\mathbf{1 3}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Kumaravelu S and Susheela Kumaravelu, Astronomy for degree classes, 7th edition 1986.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://youtu.be/libKVRa01L8
2. https://youtu.be/pIFiCLhJmig

Course Designed by	Verified by HOD	Checked by	Approved	
Name and Signature	Name with Signature	CDC	COE	
Name: Mrs. M.AMSAVENI Signature:	Name: Dr. V. INTHUMATHI V Inthineti: Signature:	Name: Signature:	Name: Signature:	
Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS407	Title	Batch:	2021-2024
		STATICS	Semester:	IV
Lecture Hrs./Week or Practical Hrs./Week	4		Credits:	4

Course Objective

This course enables a deep knowledge about the concept of Forces, Moments, Friction, Gravity and resultant of more than one force acting on a surface. It also includes simple problems in each topic which develops the application skills of the students in solving them.

Course Outcomes(CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	recall the basic concepts like friction, centre of gravity, moments.	K 1
CO 2	apply the concepts of parallel forces and moments, use them to solve problems.	K 3
CO 3	apply and solve the problems in coplanar forces, couples forces and resultant of more than one force acting on a surface.	K 3
CO 4	analyse the concepts of friction and centre of gravity.	K 4

CO5	enrich the knowledge in this course to pursue higher degree and get employability.	K3

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	M	M	M	M	M	H	M
$\mathbf{C O 2}$	H	H	H	H	H	M	M	H	M
$\mathbf{C O 3}$	H	H	H	H	H	H	M	H	M
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	M
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Forces acting at a point - Simple problems. Chapter 2: Sections: 5-16.	11
Unit II	Parallel forces -Moments (Self study) - Simple problems. Chapter 3: Sections: 1-13.	11
Unit III	Couples - Simple problems Chapter 4: Sections: 1-10.	10
Unit IV	Equilibrium of three forces acting on a rigid body - Coplanar forces (Self study) - Simple Problems. Chapter 5: Sections: 1 - 6, Chapter 6: Sections: 1 - 9.	10
Unit V	Friction and Centre of gravity - Simple problems. Chapter 7:Sections: 1, 3-8, 10-12, Chapter 8: Sections : 1-6, 18.	10
	Total Contact Hrs.	$\mathbf{5 2}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

Venkataraman M. K, Statics, Sixth Edition, Agasthiar publications, 2007.

Reference Books

1. Dharmapadam A. V, Statics,S. Viswanathan printers and Publishers Pvt. Ltd, 1993.
2. Duraipandian P and LaxmiDuraipandian, Mechanics, Ram Nagar, New Delhi, S. Chand \& Co. Pvt. Ltd, 1985.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]
https://nptel.ac.in/courses/112/106/112106180/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. R. SANTHI $R Q$	Name: Dr. V. InTHUMATHI Signature:	Name:	Name:
Signature:			

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21 UMS408	Title	Batch:	$2021-2024$
		OPERATIONS RESEARCH - I	Credits:	4
Lecture Hrs./Week or Practical Hrs./Week	5		IV	

Course Objective

The prime objective of this paper is to introduce certain OR techniques such as LPP, Transportation problems, Assignment problems, Sequencing and Replacing models to help the students to develop logical reasoning for applying mathematical tools to managerial and real life oriented problems.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	formulate real world problems as an LP model and explain the relationship between a linear program and its dual.	K 2
CO 2	solve linear programming problems using appropriate techniques and interpret the results.	K 3
CO 3	understand and solve replacement problems, build and solve specialized linear programming problems like transportation and assignment problems.	K 3

CO4	effectively communicate ideas, explain procedures, devise optimum allocations, interpret results and make firm decisions.	K4
CO5	identify and develop operational research models from the verbal description of the real system in the areas of management science, industry, engineering fields and transportation.	K4

Mapping

CO PO PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 2}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
	Linear Programming Problem: Mathematical formulation: Introduction - Linear Programming Problem - Mathematical Formulation of the Problem - illustration on Mathematical formulation of LPP's. Chapter 2: Sections: 2.1 - 2.4 Linear Programming Problem:Graphical Solution and Extension: Unit I Introduction - Graphical Solution Method -Some exceptional cases - General Linear Programming Problem - Canonical and Standard Forms of L.P.P. Chapter 3: Sections: 3.1 - 3.5	14
Unit II	Linear Programming Problem:Simplex Method: Introduction - The Computational Procedure - Use of Artificial Variables- Degeneracy in Linear Programming - Applications of Simplex Method. Chapter 4: Sections: 4.1, 4.3 - 4.5. (Excluding Two-phase method in 4.4.)	13
Unit III	Duality in Linear Programming:Introduction - General Primal-Dual pair - Formulating a Dual problem - Primal-Dual pair in Matrix form- Duality Theorems - Duality and Simplex Method. Chapter 5: Sections: 5.1 - 5.4, 5.5, 5.7	13
Unit IV	Transportation Problem: LP formulation of the Transportation Problem - Existence of Solution in TP - The Transportation Table - Loops in Transportation Tables - Finding an initial basic feasible solution - North West corner rule - Least cost Method - Vogel's approximation Method (Self Study) -Test for Optimality - Determining the Net evaluations (The uv method) - Transportation algorithm (MODI Method) - Some exceptional cases - Unbalanced Transportation Problem.	13

	Chapter 10: Sections: 10.2, 10.3, 10.5, 10.6, 10.9, 10.10, 10.13, 10.15.	
	Assignment \& Replacement Problem: Introduction - Mathematical Formulation of the Assignment Problem - Solution of Assignment Problem -Hungarian Assignment Method - Special cases in Assignment Problems- The Travelling Salesman problem -Introduction - Replacement of equipment / Assert that deteriorates gradually -Value of money does not change with time - Value of money changes with time - Selection of best equipment amongst two - Simple problems. Chapter 11: Sections: 11.1- 11.3, 11.4, 11.7. Chapter 18: Sections: 18.1, 18.2.	12
	Total Contact Hrs.	$\mathbf{6 5}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

Kanti Swarup, Gupta P. K and Man Mohan, Operations Research, Sultan Chand \& Sons, New Delhi, 2014.

Reference Books

1. Phillips T, Ravindran A and Solberg J, Operations Research: Principles and Practice, John Willey \& Sons, 1976.
2. Taha H. A, Operation Research - An introduction, Prentice Hall of India Pvt Ltd, New Delhi, 2006.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://youtu.be/Q31jKiEXxdc
2. https://youtu.be/BUGIhEecipE

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE

Name: Mrs. M. AMSAVENI	Name: Dr. V. INTHUMATHI	Name:	Name:
Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS4N1	Title	Batch:	$2021-2024$
		NME: QUANTITATIVE APTITUDE - II	Sredits:	Semester:
Lecture Hrs./Week or Practical Hrs./Week	1	2		

Course Objective

The objective of this syllabus is to make the students to clear competitive examination like Banking recruitment, Postal recruitment, Railway recruitment and TNPSC exams.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	recall the necessary fundamentals to take up the course	K2

CO 2	solve simple problems related to problems on ages, problems on trains and boats and streams.	K 3
CO 3	apply the concepts of time and work, time and distance in solving real life problems.	K 3
CO 4	develop logical thinking, problem solving skills and time management.	K 4
CO 5	clear competitive exams in banking, Postal and railway services, IT, etc..	K 4

Mapping

PO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	M	M	M	H	M	H	M	M	H
$\mathbf{C O 2}$	H	H	M	H	M	H	M	M	H
$\mathbf{C O 3}$	H	H	M	H	M	H	M	M	H
$\mathbf{C O 4}$	H	H	M	H	M	H	M	M	H
$\mathbf{C O 5}$	H	H	M	H	M	H	M	M	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Problems on ages: Problems on ages - Simple problems. Chapter 8.	3
Unit II	Time and work: Time and work - Simple problems. Chapter 15.	3
Unit III	Time and Distance : Time and Distance - Simple problems Chapter 17.	2
Unit IV	Problems on trains: Problems on trains with solved examples. Chapter 18	3
Unit V	Boats and Streams: Boats and Streams- Simple problems Chapter 19.	2
	Total Contact Hrs.	$\mathbf{1 3}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Aggarwal R. S, Quantitative Aptitude, S. Chand \& Company Ltd, Ram Nagar, New Delhi, 2013.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://youtu.be/KE7tQf9spPg
2. https://youtu.be/ufbDCFUn6PY

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Mrs. M. AMSAVENI Signature: Name: Dr. V. INTHUMATHI Vignature:	Name:	Name:	
Sunt.	Signature:	Signature:	

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS4N2	Title	Batch:	$2021-2024$
		NME:	Semester:	IV
Lecture Hrs./Week or Practical Hrs./Week	1		Credits:	2

Course Objective

This paper enables the learners to learn about the Moon and Ellipses.

Course Outcomes (CO)

After successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	understand the basic knowledge of the Moon.	K2

CO 2	acquire the facts in Eclipses.	K 2
CO 3	know the concept of planetary Phenomena.	K 3
CO 4	find the application of Astronomical Instruments like sidereal clock and chronometer.	K 4
CO 5	evaluate the Heliocentric motion of a planet	K 4

Mapping

CO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	M	M	H	M	H	M	M	M
$\mathbf{C O 2}$	M	M	H	H	M	H	M	M	M
$\mathbf{C O 3}$	M	M	H	H	M	H	M	M	M
$\mathbf{C O 4}$	M	M	M	H	M	H	M	M	M
$\mathbf{C O 5}$	M	H	M	H	M	H	M	M	M

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	The Moon: Introduction - Sidereal month - Synodic month Elongation - Conjugation - Opposition - Quadratures Daily motion of the moon - Age of moon - Phase of moon. Chapter 12: Sections: 228 - 238	3
Unit II	The Moon: Moon exhibits the same side to the earth -Lunar Librations - summer and winter full moons path of the moon with respect to the sun - Perturbations of lunar orbit. Chapter 12: Sections: 241 - 245	3
Unit III	Eclipses: Introduction - Umbra and penumbra - Lunar eclipse - Solar eclipse -Length of earth's shadow Chapter 13: Sections: 254 -257 and 264	2
Unit IV	Planetary Phenomena: Introduction - Bode's law - Elongation - Conjugation, opposition and quadratures - Heliocentric motion of a planet. Chapter 14: Sections: 283,284 and 286 - 288	3
Unit V	Astronomical Instruments: Sidereal clock - Chronometer - Gnomon Sundial - The sextant. Chapter 15: Sections: 303-306 and 310	2

	Total Contact Hrs.	13

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Kumaravelu S and Susheela Kumaravelu, Astronomy for degree classes, $7^{\text {th }}$ edition 1986.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://youtu.be/6Vc9ZiJ0qqw
2. https://youtu.be/qdI-1p21Cio

Course Designed by	Verified by HOD	Checked by	Approve	
Name and Signature	Name with Signature	CDC	COE	
Name: Mrs. M. AMSAVENI Signature:	Name: Dr. V. INTHUMATHI V Sutthentt: Signature:	Name: Signature:	Name: Signature:	
Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS509	Title	Batch:	2021-2024
		MODERN ALGEBRA	Semester:	V
Lecture Hrs./Week or Practical Hrs./Week	6		Credits:	4

Course Objective

To promote a better understanding of algebra and provides an adequate foundation for further study in abstract algebra and its applications in various branches of Mathematics.

Course Outcomes (CO)

On successful completion of this core paper, the students will be able to

CO Number	CO Statement	Knowledge Level
CO1	understand the algebraic structures such as sets, mappings, relations, groups, rings and field.	K2

CO2	understand the properties of groups, subgroups and applying in simple proofs and solving problems.	K3
CO 3	apply the results from group theory to study the properties of rings and fields and to possess the ability to work within their algebraic structures.	K 3
CO 4	understand and analyze the concepts of group homomorphism, isomorphism for groups, rings and Euclidian rings.	K 4
CO 5	enrich the knowledge in algebra to pursue higher degree and choose a teaching career.	K 4

Mapping									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	H	H	H	M	H	M	M	H	H
CO2	H	H	H	H	H	M	M	H	H
CO3	H	H	H	H	H	H	M	H	H
CO4	H	H	H	H	H	H	H	H	H
CO5	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
	Preliminary Notions:Set Theory(Self study)-Mappings(Self study). Group Theory:Definition of a Group - Some Examples of Groups - Some preliminary Lemmas - Subgroups - A Counting Principle. Chapter 1:In Section 1.1, Theorem 1.1.1 only In Section 1.2, Lemma 1.2.1 onwards Unit I Chapter 2: Sections: 2.1 - 2.5.	15
Unit II	Group Theory:Normal Subgroups and Quotient Groups - Homomorphisms. Chapter 2: Sections: 2.6, 2.7.	16
Unit III	Group Theory:Automorphisms - Cayley's Theorem - Permutation Groups - Another Counting Principle. Chapter 2: Sections: 2.8 - 2.11.	16
Unit IV	Ring Theory:Definition and Examples of Rings - Some Special Classes of Rings - Homomorphisms - Ideals and Quotient Rings. Chapter 3: Sections: 3.1 - 3.4.	16

Unit V	Ring Theory:More Ideals and Quotient Rings - The Field of Quotients of an Integral Domain - Euclidean Rings - A Particular Euclidean Ring. Chapter 3: Sections: 3.5-3.8	15
	Total Contact Hrs.	$\mathbf{7 8}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Herstein, I. N, Topics in Algebra, Wiley India Pvt. Ltd., New Delhi, $2^{\text {nd }}$ Edition, 2010.

Books for Reference :

1. Bhattacharya. P. B, Jain S. K, A first course in group theory, Wiley Eastern Pvt. Ltd, 1972.
2. Herstein I. N, Abstract Algebra, Prentice-Hall international, 1996.
3. Surjeetsingh, Qazizameeruddin, Modern Algebra, Vikas Publishing House Pvt. Ltd, Second Edition, 1975.
4. Santiago M.L, Modern Algebra, Tata McGraw Hill, 2003.
5. R. Balakrishnan and N. Ramabhadran, A Text Book of Modern Algebra, Vikas, New Delhi, 2000.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://nptel.ac.in/courses/111/106/111106137/
2. https://nptel.ac.in/courses/111/105/111105112/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE

Name: Dr. S. SIVASANKAR	Name: Dr. V. INTHUMATHI	Name:	Name:
Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS510		Batch:	$2021-2024$
		REAL	Semester:	V
Lecture Hrs./Week or Practical Hrs./Week	ANALYSIS - I	Credits:	4	

Course Objective

To enable the learner to get into basic concepts of Real Analysis and obtain a foundation for further study in analysis.

Course Outcomes (CO)
On successful completion of the course student will be able to

CO	CO Statement	Knowledge Number

CO 1	demonstrate the fundamental properties of the real numbers which underpin the formal development of real analysis.	K2
CO 2	apply the concepts of closure and interior of sets, continuity, convergence to effectively communicate mathematics.	K 3
CO 3	calculate the limits of various types of sequences, discuss the nature of continuity andanalyze their properties.	K 3
CO 4	analyze the applications of intersection theorem, covering theorems and Bolzano-Weierstrass theorem.	K 4
CO 5	understand the structure of a metric space and deal with the notions of continuity, completeness and connectedness.	K 2

Mapping

CO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	M	M	M	H	H	M	H	H
$\mathbf{C O 2}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
	The Real and Complex number Systems: Introduction - The field axioms - The order axioms - Geometric representation of real numbers-Intervals - Integers - The unique factorization theorem for integers - Rational numbers - Irrational numbers - Upper bounds, maximum element, least upper bound - The completeness axiom - Some properties of the supremum - Properties of the integers deduced from the completeness axiom - The Archimedean property of the real number system- Absolute values and the triangle inequality - The Cauchy Schwarz inequality - Plus and minus infinity and the extended real number system R*. Chapter 1: Sections: 1.1 - 1.20 (Except 1.15 - 1.17).	15
Unit II	Some Basic Notations of Set Theory: Ordered pairs - Cartesian product of two sets - Relations and functions - One to one functions and inverses - Composite functions - Sequences -Similar sets - Finite and infinite sets - Countable and uncountable sets - Unaccountability of the real number system - Set algebra - Countable collections of countable sets. Chapter 2: Sections: 2.3-2.15 (Except 2.6).	16

	Elements of Point Set Topology: Euclidean space R^{n} - Open balls and open sets in R^{n} - The structure of open sets in R^{1} - Closed sets - Adherent points, Accumulation points - Closed sets and adherent points - The Bolzano- Unit III Weierstrass theorem - The Cantor intersection theorem - Lindelof covering Chapter - 3: Sections: 3.2 - 3.12.	16
	Elements of Point Set Topology: Metric spaces - Point set topology in metric Spaces - Compact subsets of a metric space - Boundary of a set. Limits and Continuity: Convergent sequences in a metric space - Cauchy Sequences - Complete metric spaces - Limit of a function - Limits of vector valued functions. Chapter 3: Sections: 3.13 - 3.16, Chapter 4: Sections : 4.2 - 4.5, 4.7.	16
Unit V	Limits and Continuity: Continuous function - Continuity of composite functions - Continuity and inverse images of open or closed sets - Connectedness - Uniform continuity - Uniform continuity and compact sets - Discontinuities of real valued functions - Monotonic functions. Chapter 4: Sections: 4.8, 4.9, 4.12, 4.16, 4.19, 4.20, 4.22, 4.23.	15
	Total Contact Hrs.	$\mathbf{7 8}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Tom M. Apostal, Mathematical Analysis, Addison Wesley, Second Edition 2002.

Books for Reference :

1. Ralp P. Boas, A primer of Real function, The mathematical Association of America, 1960.
2. Walter Rudin, Principles of Mathematical Analysis, Third Edition, McGraw Hill Inter Editions, 1976.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://nptel.ac.in/courses/111/106/111106053/
2. https://ocw.mit.edu/courses/mathematics/18-100c-real-analysis-fall-2012/
3. https://cosmolearning.org/courses/real-analysis-with-prof-sh-kulkarni/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. S. KALEESWARI	Name: Dr. V. INTHUMATHI	Name:	Name:
Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS511		Batch:	$2021-2024$
		OPERATIONS RESEARCH -II	Semester:	V
Lecture Hrs./Week or Practical Hrs./Week		Credits:	4	

Course Objective

The prime objective of this paper is to introduce certain OR techniques such as game theory, sequencing and networking models to help the students to develop logical reasoning for applying mathematical tools to managerial and other life oriented problems.

Course Outcomes (CO)

On successful completion of the course student will be able to

CO Number	CO Statement	Knowledge Level

CO 1	recall and apply linear programming techniques to develop and solve simple models of Game theory.	K 2
CO 2	determine the optimal sequence of allocation of jobs to machines in a production line by minimizing the idle time.	K 3
CO 3	comprehend several queuing system models and extend the same to practical situations, develop network models and analyze a project with deterministic and probabilistic activity times.	K 4
CO 4	identify the importance of stocks, need for holding stocks and determine the optimum order quantity based on the available constraints.	K 4
CO 5	make constructive decisions and use the resources (labor, capital, materials, machinery) more effectively by analyzing \& applying the techniques of operations research to problems in engineering, industry, management or any business environment.	K 4

Mapping									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	H	H	H	H	H	M	H	H	H
CO2	H	H	H	H	H	H	H	H	H
CO3	H	H	H	H	H	H	H	H	H
CO4	H	H	H	H	H	H	M	H	H
CO5	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Games and strategies: Two person zero sum games - Some basic terms - The Maximin - Minimax principle - Games without Saddle points - Mixed strategies - Graphical Solution of 2xn and mx2 games - Dominance Property. Chapter 17: Sections: 17.1-17.7.	13
Unit II	Sequencing problems: Problem of Sequencing - Basic terms used in Sequencing - Processing n jobs through 2 machines - Processing n jobs through k-machines (Self study) processing 2 jobs through k-machines. Chapter 12: Sections: 12.1 - 12.6.	13
Unit III	Queuing Theory: Introduction- Queuing System - Elements of a Queuing System - Operating characteristics of a Queuing system - Classification of Queuing Models - Definition of Transient and Steady States - Poisson Queuing System Model I : (M/M/ 1): ($\infty /$ FIFO) Model III : (M/M/ 1): (N/FIFO) Model V : (M/M/ C): ($\infty /$ FIFO)	14

	Model VI : (M/M/C): (N/FIFO)(Self study) - Simple Problems. Chapter 21: Sections: 21.1-21.4, 21.7, 21.8, 21.9.	
Unit IV	Inventory control: Introduction - Types of inventories - Reasons for carrying inventories- The inventory decisions - Costs associated with inventories - Factors affecting inventory control - The concept of EOQ - Deterministic inventory problems with no shortages. Case (i) The fundamental Problem of EOQ Case (ii) Problem of EOQ with finite replenishment (Production). Deterministic inventory Problems with shortages Case (i) Problem of EOQ with instantaneous Production and variable order cycle Case (ii) Problem of EOQ with instantaneous Production and Fixed order cycle. Case (iii) Problem of EOQ with finite replenishment (Production). Problem of EOQ with price breaks Case (i) Problem of EOQ with one price break Case (ii) Problem of EOQ with more than one price break. Chapter 19: Sections: 19.1-19.4, 19.6, 19.7, 19.9-19.12.	13
Unit V	Network scheduling by PERT/CPM: Network: Basic compounds - Logical Sequencing - Rules of Network constructions - Concurrent ActivitiesCritical Path Method (CPM) (Self study) - Probability considerations in PERT - Distinction between PERT \& CPM - Simple Problems. Chapter 25: Sections: 25.1-25.8.	12
	Total Contact Hrs.	65

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Kanti Swarup, Gupta P.K. \& Man Mohan, Operations Research (2014), Sultan Chand \& Sons, New Delhi.

Books for Reference :

1. Philips T, Ravindran A and Solberg J, Operations Research: Principles and Practice, John Willey \& Sons, 1976.
2. Taha H. A, Operation Research - An introduction, Prentice Hall of India Pvt. Ltd, New Delhi, 2006.
3. P. K Gupta \&D. S Hira, Operations Research, S. Chand and company Ltd, New Delhi, 2014.
4. S. Dharani Venkatakrishnan, Operations Research principles problems, Keerthi Publishing house Pvt. Ltd.,1994.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://www.youtube.com/watch?v=xGkpXkAnWU\&list=PLjc8ejfjpgTf0LaDEHg LB3gCHZYcNtsoX\&index=30
2. https://www.youtube.com/watch?v=h0bdo06qNVw\&list=PLjc8ejfjpgTf0LaDEHg LB3gCHZYcNtsoX\&index=33
3. https://www.youtube.com/watch?v=H58TPQNr2kM\&list=PLjc8ejfjpgTf0LaDEH gLB3gCHZYcNtsoX\&index=34

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. J. JAYASUDHA Name: Dr. V. INTHUMATHI Signature: Name: Signature:	Name:		

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS512	Title	Batch:	$2021-2024$
		THEORY OF NUMBERS	Semester:	V
Lecture Hrs./Week or Practical Hrs./Week	5			

Course Objective

This course exposes the elementary basic theory of numbers and several famous functions, related theorems and some unsolved problems about primes to the students in order to enable them to deeper their understanding of the subject.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	understand the concepts of divisibility, congruence, greatest common divisor and prime-factorization.	K 2
CO 2	apply the properties of multiplicative functions such as the Euler phi-function and quadratic residues to solve the problems of number theory.	K 3
CO 3	demonstrate the concepts of linear congruence and polynomial congruence using Fermat's Theorem and Wilson's Theorem.	K 3
CO 4	analyze and solve linear Diophantine equations, congruences of various types and evaluate the unsolved problems about primes.	K 4
CO 5	clear competitive exams in banking, insurance, TNPSC and UPSC.	K 3

Mapping

$\mathbf{P O} / \mathbf{P S O}$									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	M	H	H	H	M	H	H
$\mathbf{C O 2}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Basic Representation: Principles of Mathematical Induction - The Basis Representation Theorem. The Fundamental Theorem of Arithmetic: Euclid's Division Lemma - Divisibility - The Linear Diophantine Equation - The Fundamental Theorem of Arithmetic. Chapter 1: Sections: 1.1 -1. 2. Chapter 2: Sections: 2.1 -2.4.	12
Unit II	Combinational and Computational Number Theory: Permutations and Combinations - Fermat's Little Theorem (Statement only) - Wilson's Theorem (Statement only) - Generating Functions. Fundamentals of Congruence's:Basic Properties of Congruence's (Self study) -Residue Systems. Chapter 3: Sections: 3.1 - 3.4. Chapter 4: Sections: 4.1-4.2.	12

Unit III	Solving Congruences: Linear Congruences - The Theorems of Fermat and Wilson Revisited - The Chinese Remainder Theorem - Polynomial Congruences (Self study). Chapter 5: Sections: 5.1-5.4.	13
	Arithmetic Functions: Combinatorial Study of $\Phi(\mathrm{n})$ - Formulae For d(n) and $\sigma(\mathrm{n})$ - Multiplicative Arithmetic Functions - The Mobius Inversion Formula. Chapter 6: Sections: 6.1-6.4.	14
Unit V	Primitive Roots: Properties of Reduced Residue Systems - Primitive Roots Modulo P. Prime Numbers: Elementary Properties of $\pi(\mathrm{x})$ - Tchebyshev’s Theorem - Some Unsolved Problems About Primes. Chapter 7: Sections: 7.1-7.2. Chapter 8:Sections: 8.1-8.3.	14
	Total Contact Hrs.	$\mathbf{6 5}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

George E. Andrews, Number Theory, HPS (India), 1992.

Books for Reference:

1. David M. Burten, Elementary Number Theory, McGraw- Hill edition, 2010.
2. Kumaravelu et al., Elements of Number Theory, Nagerkovil, SKV, 2002.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://nptel.ac.in/courses/111/101/111101137/
2. https://nptel.ac.in/courses/111/103/111103020/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Dr. V. CHITRA	Name: Dr. V. INTHUMATHI	Name:	Name:

| Siva | Signature: | Signature: |
| :--- | :--- | :--- | :--- |
| Signature: | Snture: | |

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS5E1	Title	Batch:	$2021-2024$
		PROGRAMMING IN 'C'	Semester:	V
Lecture Hrs./Week or Practical Hrs./Week	4	3	3	

Course Objective

C is a general- purpose structured programming language that is powerful, efficient and compact. The programming language C finds a wide variety of applications in the development of software. This course provides the students with all the fundamental concepts of the C language with some
practical experience. Also helps the students to develop their programming skills and to build large programs.

Course Outcomes (CO)
On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	understand the keywords, C-data types and variables .	K2
CO2	apply the use of statements and looping structures.	K3
CO 3	analyze the concepts of user-defined functions, in-built functions and nesting of functions	K 4
CO 4	 pointers.	K 3
CO 5	sense the basic structure of C program and apply them to small projects.	K 3

CO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	M	M	H	H	M	M	M
$\mathbf{C O 2}$	H	H	H	H	H	H	M	M	M
$\mathbf{C O 3}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
	Overview of C: History of C - Importance of C - Basic Structure of C Programs Constants ,Variables and Data Types: Introduction - Character set - C Tokens - Keywords and identifiers - Constants - Variables - Data types - Declaration of variables - Assigning values to variables - Defining symbolic constants Operators and Expressions:Introduction -Arithmetic operators - Relational Operators - Logical operators - Assignment operators - increment and	
	Decrement operators - conditional operators- Bitwise operators- Special operators - Arithmetic expressions - Evaluation of expressions - Precedence of arithmetic operators (Self study) - Type conversions in expressions - Operator precedence - Mathematical functions. Chapter 1: Sections : 1.1,1.2,1.8, Chapter 2: Sections : 2.1-2.8,2.10,2.11 Chapter 3: Sections : 3.1-3.12, 3.14-3.16	11

Unit II	Managing Input and Output Operations: Introduction - Reading a character writing a character - Formatted input - Formatted output. Decision Making and Branching: Introduction - Decision making with if statement - Simple if statement - The If ... else statement - Nesting of if ... else statements - The else if ladder - The switch statement - The ?: operator - The Go to statement. Decision Making and Looping: Introduction - The while statement - The do statement - The for statement - Jumps in loops - Simple programs. Chapter 4: Sections: 4.1- 4.5, Chapter 5: Sections : 5.1-5.9, Chapter 6: Sections :6.1-6.5.	11
Unit III	Arrays:Introduction - One dimensional arrays - Declarations of One dimensional arrays - Initializations of One dimensional arrays - Two dimensional arrays - Initializing Two dimensional arrays. Arrays and Strings: Introduction - Declaring and initializing string variables Reading strings from terminal - Writing strings to screen - Arithmetic operations on characters - Putting strings together - comparison of two strings - String handling functions - Table of strings (Self study). Chapter 7: Sections: 7.1-7.6, Chapter 8: Sections : 8.1-8.9.	10
Unit IV	User defined Functions: Introduction - Need for user defined functions - Multifunction Program - Elements of user defined functions - Definitions of functions - Return values and their types - Function Calls - Function Declaration Category of Functions - No arguments and no return values - Arguments but no return values - Arguments with return values - No arguments but returns a value - Functions that return multiple values - Nesting of functions - Recursion. Chapter 9 :Sections: 9.1-9.16	10
Unit V	Pointers: Introduction - Understanding pointers - Accessing the address of a variable - Declaring pointer variables - Initialization of pointer variables Accessing a variable through its pointer - Chain of Pointers - Pointer expressions - Pointer increments and scale factor - Pointers and arrays - Pointers and characters strings - Array of Pointers - Pointers as function arguments Functions returning Pointers - Pointers to Functions . Chapter 11: Sections: 11.1-11.15.	10
	Total Contact Hrs.	52

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Balagurusamy E., Programming in ANSI C, $7^{\text {th }}$ Edition, Tata McGraw Hill Publishing Company Ltd, 2017.

Books for Reference:

1. Kernighan B. W and Ritchie D. M, The C programming language, Prentice Hall, 1997.
2. Kochan S. G, Programming in C, Hyden, 1983.
3. Venugopal, K. R and Prasad S. R, Programming with C, Tata McGraw Hill Publishing company ltd, 1997.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://youtu.be/551-aZ7_F24
2. https://youtu.be/sY-s7O0FiYE

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Mrs. M.AMSAVENI Signature:	Name: Dr. V. INTHUMATHI	Name:	Name:

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS5E2		Batch:	$2021-2024$
		ARTIFICIAL INTELLIGENCE	Semester:	V
Lecture Hrs./Week or Practical Hrs./Week	4	AND MACHINE LEARNING	Credits:	3

Course Objective

On successful completion of the course the students are able to understand the concepts
of problem solving logics, reasoning knowledge, Decision making, Learning with searches and algorithms.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	To recall the basic logical searches, learning algorithms and improve decision making systems.	K 1
CO 2	To Summarize the idea about knowledge representation and reasoning	K 2
CO 3	To illustrate new knowledge with probabilistic reasoning solutions	K 3
CO 4	To Analyze Decision making system and its different process CO 5	To evaluate the learning skills with many observations and machine learning algorithms

Mapping

$\mathbf{P O} / \mathbf{P S O}$									
PO1	$\mathbf{P O 2}$	$\mathbf{P O 3}$	$\mathbf{P O 4}$	$\mathbf{P O 5}$	$\mathbf{P O 6}$	$\mathbf{P O} 7$	PSO1	PSO2	
$\mathbf{C O 1}$	H	H	H	H	M	H	H	H	H
$\mathbf{C O 2}$	H	M	H	H	H	H	H	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 4}$	H	M	H	H	H	H	M	H	H
$\mathbf{C O 5}$	H	H	H	H	M	M	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
	INTRODUCTION: The Introduction of AI - The History of AI - Intelligent agents - Agents based system. PROBLEM SOLVING: State Space models - Unit I	Searching for solution - Uniformed/ Blind search - Informed/Heuristic search $-A^{*}$ search - Hill - climbing search - Meta Heuristic: Genetic Algorithm - Adversary based search: Minimax - Expect Imax- Alpha Beta pruning - Constraint satisfaction problem - Backtracking search.
Unit II	KNOWLEDGE REPRESENTATION AND REASONING:Knowledge representation - Logics - bivalent logic - inference - Fuzzy logic: membership - Fuzzy rules and reasoning - Fuzzy inference	11

Unit III	UNCERTAIN KNOWLEDGE AND PROBABILISTIC REASONING: Uncertainty - Probabilistic reasoning - Semantics of Bayesian network - Exact inference in Bayesian network- Approximate inference in Bayesian network -Probabilistic reasoningovertime Inference in temporal models - HiddenMarkov Models Dynamic BayesianNetworks	10
	DECISION-MAKING: Basics of utility theory, Utility functions - Sequential decision problems - Markov decision process - Value iteration - Policyiteration - Decisions in Multi agent system: Multi agent decision theory - Group decision making	10
	Machine learning: Introduction- Probability distributions: Binary variables, Multinomial variables. Neural networks feed forward network function-Error propagation. Kernel methods-radial bias function networks .Graphical models- Bayesian networks-Discrete variables, linear Gaussian model. Mixture models andEM-K means clustering-.Combining models-Boosting Algorithm.	10
	Total Contact Hrs.	$\mathbf{5 2}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

1. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Pearson Education, 2014.
2. David Pool and Alan Mackworth, Artificial Intelligence: Foundations of Computational agents, Cambridge University Press, 2017.
3. Christopher M.Bishop, Pattern Recognition and Machine Learning, Springer, 2013.

Books for Reference:

1. C. S. Krishnamoorthy, S.. Rajeev, Artificial Intelligence and Expert Systems for Engineers, CRCPress, 1996.
2. Nils J. Nilsson, The Quest for Artificial Intelligence: A History of Ideas and achievements,Cambridge University press, 2010.
3. Alpaydin Ethem,Introduction to Machine Learning, Massachusetts Institute of Technology Press, 2009.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]
1.https://youtu.be/yaL5ZMvRRqE

2. https://youtu.be/ukzFI9rgwfU

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name with Signature	CDC	COE
Name: Mrs. M.AMSAVENI Signature:	Name: Dr. V. INTHUMATHI \qquad V Signature:	Name: Signature:	Name: Signature:

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS5E3		Batch:	$2021-2024$
		PROGRAMMING LAB IN 'C'	Semester:	V
Lecture Hrs./Week or Practical Hrs./Week	2	Credits:	2	

Course Objectives

The course is designed to provide a practical exposure to the students on ' C ' language.

Course Outcomes (CO)

On completion of the course the students will be able to

CO Number	CO Statement	Knowledge Level
CO1	write the programming code to understand the concepts of looping structure and conditional statements. CO2	write the programming code for matrix operations to understand the array concepts
CO3	write the programming code using user-defined functions and nesting of functions	K3
CO4	write the programming code using pointers	
CO5	enrich the programming knowledge and debugging	K4

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	M	M	H	M	H	M	M	H
$\mathbf{C O 2}$	H	H	H	H	M	H	H	M	H
$\mathbf{C O 3}$	H	M	H	H	M	H	H	M	H
$\mathbf{C O 4}$	H	M	H	H	M	H	H	M	H
$\mathbf{C O 5}$	H	M	H	H	M	H	H	M	H

H - HIGH; M - MEDIUM; L - LOW.

List of Programs:

1. Program to convert the given temperature in Fahrenheit to Celsius.
2. Program to convert days into months and days.
3. Program to find the solution of quadratic equation.
4. Program for finding Fibonacci sequence.
5. Program to sort a list and find its median.
6. Program to sort a list in ascending / descending order.
7. Program to calculate mean and standard deviation of a given series of numbers.
8. Program for finding the addition of two matrices.
9. Program for finding the multiplication of two matrices.
10. Program to find trace of a square matrix.
11. Program to sort a list of strings in alphabetical order.
12. Program to compute nCr value.
13. Program to check whether the number is prime or not.
14. Program to check whether the year is leap year or not.
15. Program to illustrate the use of pointers in one dimensional array.

Text Book:

Balagurusamy E, Programming in ANSI C, $7^{\text {th }}$ Edition, Tata McGraw Hill Publishing Company Ltd, 2017.

Books for Reference:

1. Kernighan B. W and Ritchie D. M, The C programming language, Prentice Hall, 1997.
2. Kochan S. G, Programming in C, Hyden, 1983.
3. Venugopal, K. R and Prasad S. R, Programming with C, Tata McGraw Hill Publishing company ltd, 1997.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://youtu.be/D5317rRP1Ss
2. https://youtu.be/s9fF8aSfQwg

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Mrs. M.AMSAVENI	Name: Dr. V.INTHUMATHI	Name:	Name:
HCt	Signature:	Signature:	

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS5AL	Title	Batch:	$2021-2024$
		ADVANCED LEARNER COURSE Lecture Hrs./Week or Practical Hrs./Week	-	Semester:
OPTIONAL): ADVANCED OPERATIONS RESEARCH - I	Credits:	4^{*}		

Course Objective

The course aims to introduce some OR techniques like Integer programming, Gold programming, dynamic programming etc. to build capabilities in students for analyzing different business situations involving
limited resources and obtained logical solutions.
Course Outcomes (CO)
On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge Level
CO1	recall Linear programming techniques, understand and apply advanced techniques in linear programming and duality to real life problems	K2 \& K3
$\mathbf{C O 2}$	understand and solve variety of problems such as replacement problems, transportation problem etc.	K2 \&K3
CO3	sketch the theoretical workings of Integer programming, Goal programming, Dynamic programming problems and their solution procedures.	K3
CO4	analyze any real system and formulate Mathematical models.	
$\mathbf{C O 5}$	make effective decisions under various business situations by applying appropriate optimization techniques.	K4

Mapping

CO PO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	H	H	M	M	H	H
$\mathbf{C O 2}$	H	M	H	H	H	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	M	M	M	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content
	Duality in Linear Programming:Economic Interpretation of Duality - Dual Simplex method.
Unit I	LPP - Advanced Techniques: Introduction - Revised Simplex Method - Bounded Variables. Chapter 5: Sections: 5.8, 5.9. Chapter 9: Sections: 9.1, 9.2and 9.4.
Unit II	Integer Programming: Introduction - Pure And Mixed Integer Programming Problems - Gomory's All-IPP Method - Construction of Gomory's constraint Fractional Cut Method - All Integer LPP, Fractional Cut Method - Mixed Integer LPP - Branch and Bound Method. Chapter 7: Sections: 7.1-7.7.

Unit III	Goal Programming: Introduction - Categorization of Goal Programming -Formulation of Linear Goal Programming Problem - Graphical Goal Attainment Method - Simplex Method for Goal Programming Problem. Chapter 8: Sections: 8.1 - 8.5.
	Dynamic Programming: Introduction - The Recursive Equation Approach - Characteristics of Dynamic Programming - Dynamic Programming Algorithm. Chapter 13: Sections: 13.1 - 13.4.
	Replacement problem and System Reliability:Replacement of Equipment that fails suddenly - Recruitment and Promotion problem. Transportation Problem: Stepping Stone Solution Method - Time Minimization Transportation Problem - Transshipment Problems. Chapter 18: 18.3 and 18.4. Chapter 10: 10.14, 10.16 and 10.17.

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Kanti Swarup, Gupta P.K. \& Man Mohan, Operations Research (2014), Sultan Chand \& Sons, New Delhi.

Books for Reference :

1. Philips T, Ravindran A and Solberg J, Operations Research: Principles and Practice, John Willey \& Sons, 1976.
2. Taha H. A, Operation Research - An introduction, Prentice Hall of India Pvt. Ltd, New Delhi, 2006.
3. P. K Gupta \&D. S Hira, Operations Research, S. Chand and company Ltd, New Delhi, 2014.
4. S. Dharani Venkatakrishnan, Operations Research principles problems, Keerthi Publishing house Pvt. Ltd.,1994.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://www.youtube.com/watch?v=xGkpXkAnWU\&list=PLjc8ejfjpgTf0LaDEHg LB3gCHZYcNtsoX\&index=30
2. https://www.youtube.com/watch?v=h0bdo06qNVw\&list=PLjc8ejfjpgTf0LaDEHg LB3gCHZYcNtsoX\&index=33
3. https://www.youtube.com/watch?v=H58TPQNr2kM\&list=PLjc8ejfjpgTf0LaDEH gLB3gCHZYcNtsoX\&index=34

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name: Dr. J. JAYASUDHA	Name: Dr. V.INTHUMATHI	Name:	Name:
	Ve Sthuneth:		
Signature:	Signature:	Signature:	Signature:

VALUE ADDED COURSES

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UMS5VA		Batch:	$2021-2024$
		ADOBE PHOTOSHOP	Semester:	
Lecture Hrs./Week or Practical Hrs./Week		Credits:	2^{*}	

Units	Content	Hrs.		
	Introduction of Photoshop\&Tools Section-I Introduction-About Graphics-Types of Graphics-About Colour Profiles- Ubout DPI-Software Introduction-Move Tool-Selection Tool-Resize Tool- Brush Tool-History Brush Tool-Clone Stamp-Pen Tool-Shape Tool-Zoom Tool.	8		
Unit II	Layers Layer Introduction-Quick Mask Mode-Layer Mask	6		
Unit III	Working with Images Image Editing-Image Resizing-Photo Retouching-Black and White image to Colour	5		
Unit IV	Blending Options \& Effects Manipulation Effects-Oil Painting-Posterize Effects-Caricature -Threshold Effects-Double Tone Effects-Day To Night Effects-Text Portrait-Text Effects	6		
Unit V	Advertisement Materials Posters, Flyers, Banners, Business Card, Mockup \& Material Download	5		
	Total Contact Hrs.			

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:	Name: Dr. V.INTHUMATHI	Name:	Name:
Signature:	V_Snthumeth:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	B.Sc. Mathematics	
Course Code:	21UMS5S1	Title	Batch:	$2021-2024$
		FINANCIAL	Semester:	V
Lecture Hrs./Week or Practical Hrs./Week	1		Credits:	2

Course Objective

This course provides an introduction to the basic mathematical concepts and techniques used in finance and business, highlighting the inter-relationships of the mathematics and developing problem solving solutions with a particular emphasis on financial and business applications

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Demonstrate an understanding of the term structure of interest rates.	K2
CO2	Define and describe in detail, the use of simple and compound rates of interest and distinguish between nominal and effective rates of interest	K3
CO3	Demonstrate an understanding of concepts relating to annuities	K3
CO4	Describe in detail the various types of annuities and perpetuities and use them to solve financial transaction problems	K3
CO5	Demonstrate their ability to apply the technical solutions related to the course in a practical context.	K3

Mapping

CO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	M	H	H	M	M	M	M
$\mathbf{C O 2}$	H	H	M	H	H	M	M	H	M
$\mathbf{C O 3}$	H	H	M	M	M	M	M	M	M
$\mathbf{C O 4}$	H	H	M	H	H	H	M	M	M
$\mathbf{C O 5}$	H	H	H	H	H	H	M	M	M

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Rates of interest - Simple and Compound interest rates - Accumulation and Present value of payments - Nominal rate of interest - Effective rate of interest. Solving problems associated with the above topics.	2
Unit II	Limiting case of $\mathrm{i}^{(\mathrm{m})}$ - Concept of Force of interest ' \square ' - Establishing relationship between the effective, nominal and force of interest - Application of Euler's theorem. Solving problems associated with the above topics.	3

Unit III	Introduction to Series of Payments - Definition of Annuity - Annuity certain Immediate and deferred annuities - Accumulations and Present values of Annuities where the payments and interest rates have same frequencies. Solving problems associated with the above topics.	2
Unit IV	Definition and Derivation of ${ }^{a_{\bar{n}}},{ }^{s} \overline{n_{\mid}}$, . Definition of Perpetuity- Expressions $(I s)_{\bar{n} \mid}$ and ${ }^{(D a)^{-} \mid \text {. Values of annuities where the successive installments form }}$ an arithmetic progression / geometric progression. Solving problems associated with the above topics.	3
Unit V	Accumulations and Present values of Annuities where payments and interest rates have different frequencies. Definition and derivation of ${ }^{a \frac{(p)}{n \mid},} \ddot{a}_{\underline{n}}^{(p)}$ and their corresponding accumulated values. Solving problems associated with the above topics.	3
	Total Contact Hrs.	13

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

1. CM 1-Actuarial Mathematics-Combined material pack-The Actuarial Education Company on behalf of the Institute and Faculty of Actuaries, London, 2019.
2. IC - 81- Mathematical Basis of Life Assurance - published by Insurance Institute of India, 1991.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://youtu.be/mFI58RRCDbs
2. https://youtu.be/A7eKB6xRuYM

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Dr. V.INTHUMATHI	Name: Dr. V.INTHUMATHI	Name:	Name:
Vigntheneth:	Venthenetti:		
Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21 UMS613	Title	Batch:	$2021-2024$
		LINEAR ALGEBRA	Semester:	VI
Lecture Hrs./Week or Practical Hrs./Week	6	Credits:	4	

Course Objective

To enable the students to study how to solve system of linear algebraic equations, basic concepts
of an algebraic structure namely vector space and its properties of linear transformations on vector spaces and their relation between matrices.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	solve systems of linear equations and to reduce the augmented matrix to echelon form or to row reduced echelon form.	K 3
CO 2	understand the basic ideas of vector spaces and the concepts of span, linear independence, basis, dimension and to apply these concepts to vector spaces and subspaces.	K 2
CO 3	find row space, column space, null space,rank and nullity of a matrix and to understand the relationship of these concepts to associated systems of linear equations.	K 3
CO 4	apply the principles of matrix algebra to linear transformations and analyze the competence with the basic ideas in Vector spaces, Dual spaces and linear transformation.	K 4
CO 5	enrich the knowledge in Linear Algebra to pursue higher degree in Mathematics and other discipline, as well to get employability in education field and IT sectors.	K 4

Mapping

$\mathbf{C O} / \mathbf{P S O}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	H	M	M	M	H	H
$\mathbf{C O 2}$	H	H	H	H	M	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Linear Equations: Fields - Systems of Linear Equations - Matrices and Elementary Row Operations- Row Reduced Echelon Matrices -Matrix Multiplication (Self study) - Invertible Matrices. Chapter 1: Sections: 1.1 - 1.6.	16
Unit II	Vector Spaces: Vector Spaces - Subspaces - Bases and Dimension - Coordinates - Summary of Row Equivalence (Self study). Chapter 2: Sections: 2.1 - 2.5.	16
Unit III	Linear Transformations: Linear transformations - The Algebra of Linear Transformations - Isomorphism. Chapter 3: Sections: 3.1 - 3.3.	16
Unit IV	Linear Transformation: Representation of Transformations by Matrices - Linear Functionals. Chapter 3: Sections: 3.4, 3.5.	15
Unit V	Linear Transformation: The Double Dual - The Transpose of a Linear Transformation. Chapter 3: Sections: 3.6, 3.7.	15
	Total Contact Hrs.	$\mathbf{7 8}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.
Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Kenneth Hoffman and Ray Kunze, Linear Algebra, Second Edition, PHI Learning Pvt. Ltd, New Delhi, 2013.

Books for Reference:

1. Herstein I. N, Topics in algebra, Vikas Publishing House Pvt. Ltd, 1981.
2. Kumaresan S, Linear Algebra, Prentice Hall of India, 2001.
3. Seymour Lipschutz and Marc Lipson, Linear Algebra, Tata McGraw Hill,3rd Edition, 2001.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://nptel.ac.in/courses/111/105/111105112/
2. https://nptel.ac.in/courses/111/106/111106051/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Dr. S. SIVASANKAR	Name: Dr. V.INTHUMATHI	Name:	Name:
Signature:	Venthumeth:		

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UMS614		Batch:	$2021-2024$
		REAL	Semester:	VI
Lecture Hrs./Week or Practical Hrs./Week	ANALYSIS - II		4	

Course Objective

To equip the students for study in Real analysis by introducing further some of advanced topics in Real Analysis.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	understand and use abstract mathematical concepts of derivatives and functions of bounded variation.	K 2
CO 2	apply the properties of monotonic functions and continuous functions of bounded variation in the context of real analysis.	K 3
CO 3	apply the ideas of total variation and step into the theory of Riemann Stieltjes Integral.	K 3
CO 4	analyze the Riemann Integral and Riemann-Stieltjes integral in detail and write complete, correct and coherent proofs.	K 4
CO 5	enhance higher order learning and demonstrate how abstract ideas in real analysis can be applied to practical problems.	K 4

CO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 2}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	M	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
	Derivatives: Introduction - Definition of derivative - Derivatives and continuity - Algebra of Derivatives - The chain rule - One sided Derivatives and infinite derivatives -Functions with nonzero derivative - Zero derivatives and local extrema - Rolle's theorem - The Mean Value Theorem for derivatives -Intermediate value theorem for derivatives - Taylor's formula with remainder. Chapter 5:Sections: 5.1-5.12.	15

	Functions of Bounded Variations: Introduction - Properties of monotonic functions - Functions of bounded variations - Total variations - Additive property of total variation - Total variation on [a, x] as a function of x - Functions of bounded variation expressed as the difference of increasing functions - Continuous functions of bounded variation. Chapter 6: Sections: 6.1 - 6.8.	16
	The Riemann-Stieltjes Integral: Introduction - Notation - The definition of Riemann-Stieltjes Integral - Linear properties - Integration by parts - Change of variable in Riemann-Stieltjes integral - Reduction to a Riemann integral - Unit III finite sum - Euler's summation formula. of a Riemann-Stieltjes integral to a Chapter 7 :Sections: 7.1 - 7.10	16
Unit IV	The Riemann-Stieltjes Integral: Monotonically increasing integrators - Upper and lower integrals - Additive and linearity properties of upper and lower integrals - Riemann’s condition - Comparison theorems - Integrators of bounded variation - Sufficient conditions for existence of Riemann- Stieltjes integrals - Necessary conditions for existence of Riemann-Stieltjes integrals. Chapter 7: Sections: 7.11 - 7.17.	16
Unit V	The Riemann-Stieltjes Integral: Mean Value Theorems for Riemann- Stieltjes Integrals - The integral as a function of the interval - Second fundamental theorem of integral calculus - Change of variable in a Riemann integral - Second Mean-Value Theorem for Riemann integrals. Chapter 7: Sections: 7.18 - 7.22.	15
	Total Contact Hrs.	$\mathbf{7 8}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Tom M. Apostal, Mathematical Analysis, Narosa Publishing House, Second Edition 2002.

Books for Reference:

1. Goldberg R. R, Methods of Real Analysis, Oxford and IBH Publishing Co., 1973.
2. Soma Sundaram D, Choudhary B, A first course in Mathematical Analysis,Narosa Publishing House, 1996.
3. Walter Rudin, Principles of Mathematical Analysis, McGraw Hill Inc, Third Edition, 1976.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://ocw.mit.edu/courses/mathematics/18-100c-real-analysis-fall-2012/
2. https://cosmolearning.org/courses/real-analysis-with-prof-sh-kulkarni/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Dr. S. KALEESWARI	Name: Dr. V.INTHUMATHI	Name:	Name:
Signature:	Vignature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21 UMS615	Title	Batch:	$2021-2024$
		COMPLEX	Semester:	VI
Lecture Hrs./Week or Practical Hrs./Week	ANALYSIS		4	

Course Objective

This course help the students to have an in depth knowledge of limits and continuity, analytic functions, uniform convergence, conformal mapping and Singularities.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	understand the fundamental ideas of the functions of complex variables and complex integrals.	K 2
CO 2	analyze the concepts of sequences and series of complex functions to generate Taylor series and Laurent series.	K 3
CO 3	analyze integrals along a path in the complex plane by applying Cauchy integral formula and its various versions.	K 3
CO 4	apply the concept of line integrals in fundamental theorems like Cauchy theorem for rectangle and Cauchy theorem for disc.	K 3
CO 5	determine zeros and poles of simple functions, find the nature of the singularities and hence to calculate residues.	K 3

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	H	H	H	H	H	H	H	H	H
CO2	H	H	H	H	M	M	H	H	H
$\mathbf{C O 3}$	H	H	H	H	M	M	H	H	H
$\mathbf{C O 4}$	H	H	H	H	M	M	H	H	H
$\mathbf{C O 5}$	H	H	H	H	M	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Introduction to the concept of analytic function: Limits and Continuity - Analytic functions - Polynomials - Rational Functions. (Self study) Chapter 1: Sections: 1.1-1.4.	14

	Elementary theory of power series: Sequences - Series - Uniform Convergence - Power Series - Abel's Limit Theorem. Chapter 2: Sections: 2.1-2.5.	13
Unit III	The Exponential, Trigonometric Functions and Conformality: The Exponential -The Trigonometric Functions (Self study) - The periodicity - The Logarithm - Arcs and Closed Curves - Analytic Functions in Regions - Conformal Mapping. Chapter 2: Sections: 3.1-3.4 Chapter 3: Sections: 2.1 - 2.3.	13
Unit IV	Fundamental Theorems : Line Integrals - Line Integrals as Function of Arcs - Cauchy’s Theorem in a Rectangle - Cauchy’s Theorem in a Disc - The Index of a Point with respect to a Closed Curve - Cauchy's Integral Formula. Chapter 4 : Sections: 1.1, 1.3, 1.4, and 1.5. Chapter 4: Sections: 2.1- 2.2.	13
Unit V	Local Properties of Analytic functions: Removable Singularities, Taylor's Theorem - Zeros and Poles - The Local Mapping - The Maximum Principle. Chapter 4 : Sections: 3.1- 3.4.	12
	Total Contact Hrs.	$\mathbf{6 5}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Lars V. Ahlfors, Complex Analysis, MCGRAW HILL international Edition, (Indian Edition), 2013.

Books for Reference:

1. Goyal\& Gupta, Functions of a Complex Variable - Pragati's Edition, 2012.
2. Ponnusamy S., Foundations of Complex Analysis Narosa publishing house, Second Edition, 2009.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://nptel.ac.in/courses/111/107/111107056/
2. https://nptel.ac.in/courses/111/103/111103070/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Dr. M. MAHESWARI	Name: Dr. V.INTHUMATHI	Name:	Name:
M.Mallel_	V_ Snthenetti:		
Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UMS6E1	Title	Batch:	$2021-2024$
			Semester:	VI

Lecture Hrs./Week or Practical Hrs./Week	5	MATHEMATICS	Credits:	5

Course Objective

In this course a set of topics that are of genuine use in computer science and elsewhere are identified and combined together in a logically coherent fashion, to enable the students to get a good training in these topics which will inevitably lead the students in the direction of clear thinking, sound reasoning and a proper attitude towards the applications of Mathematics in computer science and other related fields.

Course Outcomes (CO)
On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	understand the basic definitions of logic, lattice theory, graph theory and automata theory.	K 2
CO 2	acquire knowledge about discrete structures which include sets, relations, functions, graphs and recurrence relations.	K 3
CO 3	analyze how lattices and Boolean algebra are used as tools and mathematical models in the study of networks.	K 4
CO 4	apply logically valid forms of arguments to avoid logical errors and to construct mathematical arguments using logical connectives and quantifiers.	K 4
CO 5	apply the concepts to the field of computer science, information technology,cryptography and software engineering.	K 3

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	M	H	H	M	H	H
$\mathbf{C O 2}$	H	H	H	M	H	H	M	H	H
$\mathbf{C O 3}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Hrs.

	Recurrence Relations and Generating functions: Recurrence - An Introduction - Polynomials and their Evaluations - Recurrence Relations - Unit I Solution of Finite order Homogeneous (linear) Relations - Solution of Non- Homogeneous Relations - Generating Functions - Some Common Recurrence Relations. Text Book 1: Chapter 5: Sections: 1-7.	14
Unit II	Logic:Tautology - Tautological Implications and Equivalence of Formulae - Replacement Process - Functionally Complete Sets of Connectives and Duality Law - Normal Forms - Principle Normal Forms - Theory of inference - open statements - Theory of inference for predicate calculus. Text Book 1: Chapter 9: Sections: 8 - 14, 17.	13
Unit III	Lattices and Boolean Algebra: Lattices - Some Properties of Lattices - New Lattices - Modular and Distributive Lattices - Boolean Algebras Text Book 1: Chapter 10: Sections: 1 - 5.	13
Unit IV	Graph Theory: Introduction - Basic Terminology - Paths, Cycles and Connectivity - Subgraphs - Types of Graphs - Isomorpic Graphs - Homeomorphic Graphs - Eulerian and Hamiltonian Graphs (Self study). Text Book 2: Chapter 9: Sections: 9.1 - 9.7 and 9.9.	12
Unit V	Language, Grammar and Automata: Introduction - Language - The Set Theory of Strings - Languages - Regular Expressions and Regular Languages - Grammar - Finite-State Machine - Finite State Automata. Text Book 2: Chapter 15: Sections: 15.1 - 15.7.	13
	Total Contact Hrs.	

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Books:

1. Venkataraman M. K, Sridharan N and Chandrasekaran N, Discrete Mathematics, The National Publishing Company, 2000.
2. Sharma J. K, Discrete Mathematics, Macmillan Publishers India Ltd, 2011.

Books for Reference:

1. Ralph P.Grimaldi, Discrete and Combinatoral Mathematics - An applied introduction,

Third Edition, Addison Wesley Publishing Company, 1994.
2. Tremblay J. P and Manohar R, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill, 2001.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://nptel.ac.in/courses/111/106/111106086/
2. https://nptel.ac.in/courses/111/107/111107058/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Dr.V.CHITRA	Name: Dr. V.INTHUMATHI	Name:	Name:
Qin.	Sinnathene:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UMS6E2		Batch:	$2021-2024$
			Semester:	VI

Lecture Hrs./Week or Practical Hrs./Week	5		Credits:	5

Course Objective

Graph theory is a major area of Combinatorics. In this Course we introduce the learners to some basic topics in graph theory.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	recall the basic concepts and definitions of graphs along with types and their examples.	K 1
CO 2	demonstrate the concepts of connectivity and line connectivity.	K 3
CO 3	compare the features of Eulerian graphs and Hamiltonian graphs. apply the concept of directed graphs to solve network flow problems.	K 4
CO 4	K 3	
CO 5	relate the graph theory to the real world problems.	K 4

PO /PSO									
COO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	
$\mathbf{C O 1}$	H	H	H	M	H	H	H	H	H
$\mathbf{C O 2}$	H	M	H	M	H	H	M	H	H
$\mathbf{C O 3}$	H	M	M	M	M	H	M	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Contents	Hrs.

Unit-I	Graphs: Varieties of graphs - Walks and connectedness - Degrees - Operation on Graphs. Matrices: The adjacency matrix - The incidence Matrix.	14	
Unit-II	Blocks: Cut points - bridges - and blocks - Block graphs and cut point graphs. Trees: Characterization of trees - Centers and centroids.	13	
Unit-III	Connectivity: Connectivity and line-connectivity. Traversibility: Euelerian graphs.	13	
Unit-IV	Traversibility: Hamiltonian graphs. Factorization: 1-factorization - 2-factorization.	12	
Unit-V	Planarity: Plane and planar graphs - Outer planar graphs.	13	
	Total Contact Hrs.		

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Frank Haray. (2001). Graph Theory. Narosha Publishing.

Books for Reference:

1. Balakrishnan, R. and Ranganathan. K. (2000). A Text Book on Graph Theory. New York: Springer Verlog.
2. Gould, R. (1988). Graph Theory, California: The Benjamin/ Cummings Publishing Company, Inc.
3. Hartsfield, N. and Ringel, G.(1990) Pearls in Graph Theory, Academic Press.
4. Bondy, J.A. and Murty U.S.R. (1976) Graph Theory with Applications, Macmillan Company.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://youtu.be/1h2BoCtobXw
2. https://youtu.be/R9R9hhue614

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Dr.V.CHITRA	Name: Dr. V.INTHUMATHI	Name:	Name:
Qinn	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics

Course Code:	21UMS6E3	Title	Batch:	$2021-2024$
	OOP with C+++		Semester:	VI
Lecture Hrs./Week or Practical Hrs./Week	4		Credits:	3

Course Objective

The aim of this course is to know all needed about C++ and object oriented programming and also to meet the global requirements in software industries.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	understand the basics of tokens, expressions and control structures.	K 2
CO 2	understand and apply the concepts of functions, classes, objects.	K 3
CO 3	analyze the concepts of single inheritance, multiple inheritance, call by function, call by reference of a function and polymorphism.	K 4
CO 4	analyze the use of operator overloading and type conversions.	K 4
CO 5	develop program codes effectively using OOPS.	K 5

Mapping

$\mathbf{C O} / \mathbf{P S O}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	M	M	H	H	M	H	M	M	H
$\mathbf{C O 2}$	M	M	H	H	M	H	M	M	H
$\mathbf{C O 3}$	H	H	H	H	H	H	H	M	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	M	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	M	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
	Beginning with C++: What is C++? - Applications of C++ - A Simple C++ Program - More C++ Statements - An Example with Class - Structure of C++ Program. Tokens, Expressions and Control Structures: Introduction-Tokens(Self study) - Keywords - Identifiers and Constants - Basic Data Types - User- Defined Data Types - Storage Classes - Derived Data Types - Symbolic constants - Type Compatibility - Declaration of Variables - Dynamic Initialization of Variables - Reference Variables - Operators in C++ - Scope Resolution Operator - Member Dereferencing Operators - Memory Management Operators - Manipulators - Type Cast Operator - Expressions and Their Types - Special Assignment Expressions - Implicit Conversions - Operator Overloading - Operator Precedence - Control Structures.	
Unit Chapter 2: Sections: 2.1-2.6. Chapter 3: Sections: 3.1-3.25		
Unit II	Functions in C++: Introduction - The Main Function - Function Prototyping - Call by Reference - Return by Reference - Inline Functions -Default Arguments - const Arguments - Recursion - Function Overloading - Friend and Virtual Functions - Math Library Functions.	
Classes and objects:Introduction - C Structures Revisited - Specifying a	10	
Class - Defining Member Functions - C++ Program with Class - Making an Outside Function Inline - Nesting of Member Functions - Private Member Functions - Arrays within a Class - Memory Allocation for Objects. Chapter 4: Sections: 4.1-4.12 Chapter 5: Sections: 5.1-5.10.		
Classes and objects:Static Data Members - Static Member Functions- Array of Objects - Object as Function Arguments - Friendly Functions - Returning		
Objects - const Member Function - Pointers to Members - Local Classes.		
Constructors and Destructors:Introduction - Constructors - Parameterized		
Constructors - Multiple Constructors in a Class - Constructors with Default		
Arguments - Dynamic Initialization of Objects - Copy Constructors -		
Dynamic Constructors - Constructing Two-Dimensional Arrays - const		
Objects - Destructors.		
Chapter 5: Sections: 5.11-5.19.		
Chapter 6: Sections: 6.1-6.11.		

	Operator overloading and Type conversions: Introduction - Defining Operator Overloading - Overloading Unary Operator - Overloading Binary Operators - Overloading Binary Operators Using Friends - Manipulation of Strings Using Operators - Some Other Operator Overloading Examples - Rules for Overloading Operators - Type Conversions. Inheritance: Extending Classes: Introduction - Defining Derived Classes - Single Inheritance - Making a Private Member Inheritable - Multilevel Inheritance - Multiple Inheritance - Hierarchical Inheritance - Hybrid Inheritance - Virtual Base Classes - Abstract Classes - Constructors in Derived Classes - Member Classes: Nesting of Classes. Chapter 7: Sections: 7.1-7.9 Chapter 8: Sections: 8.1-8.12.	10
Unit V	Pointers, Virtual Functions and Polymorphisms: Introduction - Pointers (Self study) Pointers to Objects - this Pointer - Polymorphism - Pointers to Derived Classes - Virtual Functions - Pure Virtual Functions. Chapter 9: Sections: 9.1-9.8.	10
	Total Contact Hrs.	$\mathbf{5 2}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Balagurusamy E, Object Oriented Programming with C++,Tata McGraw Hill Publishing Company, Seventh Edition, New Delhi, 2018.

Books for Reference:

1. BjarneStroustroup, The C++ Programming language, Addison Wesley, 1991.
2. Herbert Schildt Osborne, Teach You C++,McGraw Hill Publishing Company, 1994.
3. Robert Lafore, Object Oriented Programming in turbo C++, Waite group, 1992.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://youtu.be/xoL6WvCARJY
2.https://youtu.be/m_MQYyJpIjg

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Mrs. A. GNANASOUNDARI	Name: Dr. V.INTHUMATHI	Name:	Name:
A. Cruno.	VenthemetL:		
Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UMS6E4	Title	Batch:	$2021-2024$
		INTRODUCTION TO INDUSTRY 4.0	Semester:	VI
Lecture Hrs./Week or Practical Hrs./Week	4	Vredits	3	

Course Objective

To impart knowledge on Industry 4.0, need for digital transformation and the following Industry 4.0 tools:

1. ArtificialIntelligence
2. Big Data and DataAnalytics
3. Internet ofThings

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	Know the reason for adopting Industry 4.0 and Artificial Intelligence.	K 1
CO 2	Understand the need for digital transformation.	K 2
CO 3	Apply the industry 4.0 tools.	K 3
CO 4	Analyze the applications of Big Data .	K 4
CO 5	Examine the applications and security of IoT Applications.	K 4

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	M	M	H	H	M	H	M	M	H
$\mathbf{C O 2}$	M	M	H	H	M	H	M	M	H
$\mathbf{C O 3}$	H	H	H	H	H	H	H	M	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	M	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	M	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Industry 4.0: Need - Reason for Adopting Industry 4.0 -Definition Goals and Design Principles - Technologies of Industry 4.0 - Big Data Artificial Intelligence (AI) - Industrial Internetof Things - Cyber Security Cloud - Augmented Reality. .	11
Unit II	Artificial Intelligence : Artificial Intelligence : Artificial Intelligence (AI) - What \& Why? - History of AI - Foundations of AI -The AI -environment - Societal Influences of AI - Application Domains and Tools - Associated Technologies of AI - Future Prospects of AI - Challenges of AI .	10
Unit III	Big Data And IoT : Big Data : Evolution - Data Evolution - Data Terminologies - Big Data Definitions - Essential of Big Data in Industry 4.0-Big Data Merits and Advantages - Big Data Components : Big Data Characteristics - Big Data Processing Frameworks - Big Data Applications Big Data Tools - Big Data Domain Stack : Big Data in Data Science - Big Data in IoT - Big Data in Machine Learning- Big Data in Databases - Big Data Use cases Big Data in Social Causes - Big Data for Industry - Big Data Roles and Skills -Big Data Roles - Learning Platforms; Internet of Things (IoT) : Introduction to IoT - Architecture of IoT - Technologies for IoT - Developing IoT Applications -Applications of IoT - Security in IoT	11
Unit IV	Applications And Tools Of Industry 4.0: Applications of IoT Manufacturing - Healthcare - Education - Aerospace and Defense Agriculture - Transportation and Logistics - Impact of Industry 4.0 on Society: Impact on Business, Government, People. Tools for Artificial Intelligence, Big Data and DataAnalytics, Virtual Reality, Augmented Reality, IoT, Robotics.	10
Unit V	Jobs 2030: Industry 4.0 - Education 4.0 - Curriculum 4.0 - Faculty 4.0 Skills required for Future - Tools for Education - Artificial Intelligence Jobs in 2030 -Jobs 2030 Framework foraligning Education with Industry 4.0 .	10
	Total Contact Hrs.	52

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Higher Education for Industry 4.0 and Transformation to Education 5.0(2021)-P.Kaliraj\& T. Devi

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

$1 \mathrm{https}: / / n p t e l . a c$. in/courses/106/105/106105195/

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Mrs. A. GNANASOUNDARI	Name: Dr. V.INTHUMATHI	Name:	Name:
A. Cunbo.	Venthuneth:		
Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UMS6E5		Batch:	$2021-2024$
		Programming Lab in OOP with C++	Semester:	VI
Lecture Hrs./Week or Practical Hrs./Week	2	2		

Course Objective

This course is designed to provide a practical knowledge to the students on $\mathrm{C}++$.
Course Outcomes (CO)
On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	develop the OOPS program to understand the concepts of multi dimensional arrays.	K 3
CO 2	develop the program to understand the concepts of constructors, destructors and overloading constructors.	K 4
CO 3	develop the program for single and multilevel inheritance.	K 4
CO 4	develop the program for understanding the concepts of pointer object and polymorphism.	K 4
CO 5	competent in developing the programming code and debugging.	K 5

Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	M	H	H	M	M	M	M	H
$\mathbf{C O 2}$	H	M	H	H	M	M	M	M	H
$\mathbf{C O 3}$	H	M	H	H	M	H	M	M	H
$\mathbf{C O 4}$	H	M	H	H	M	H	M	M	H
$\mathbf{C O 5}$	H	M	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

List of programs:

1. Program to find the Mean and variance
2. Program to find the largest of two numbers using nesting of member functions
3. Program to illustrate the use of array of objects
4. Program to illustrate the use of objects as arguments
5. Program to swap private data of classes using friend function
6. Program to illustrate overloaded constructors
7. Program to illustrate matrix multiplication
8. Program to illustrate the use of 'new' in constructors
9. Program to illustrate overloading + operators
10. Program to explain single inheritance
11. Program to illustrate multilevel inheritance
12. Program to explain hybrid inheritance
13. Program to illustrate the use of initialization lists in the base and derived constructors
14. Program to illustrate the use of pointers to objects
15. Program to illustrate runtime polymorphism

Text Book:

Balagurusamy E, Object Oriented Programming with C++,Tata McGraw Hill Publishing Company, Seventh Edition, New Delhi, 2018.

Books for Reference:

1. BjarneStroustroup, The C++ Programming language, Addison Wesley, 1991.
2. Herbert Schildt Osborne, Teach You C++,McGraw Hill Publishing Company, 1994.
3. Robert Lafore, Object Oriented Programming in turbo C++, Waite group, 1992.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://youtu.be/xoL6WvCARJY
2.https://youtu.be/m_MQYyJpIjg

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Mrs. A. GNANASOUNDARI	Name: Dr. V.INTHUMATHI	Name:	Name:
A. Cundo.	Venthunnth:		
Signature:	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UMS6AL	Title	Batch:	$2021-2024$
		ADVANCED LEARNER COURSE Lecture Hrs./Week or Practical Hrs./Week	-	Semester:
		OPTIONAL): ADVANCED OPERATIONS RESEARCH - II	Credits:	4^{*}

Course Objective

The course aims to expose non-linear programming and simulation. Further it helps the student to understand different computational algorithms used in solving non-linear programming problems. The course also enables to schedule projects and build mathematical models to study the real world system.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	understand non-linear programming problems and familiarize different solving procedures	K2\& K3
CO2	formulate and solve non-linear programming problems using appropriate techniques and interpret the results.	K3
CO3	simulate Various real life probabilistic situations using methods like Monte Carlo simulation	K4
CO4	analyze the resources efficiently under various constrains and estimate the probability of completing a project on time.	K4
CO5	develop critical and analytical skills that enable to apply optimization techniques constructively to any business environment and draw wise decisions.	K4

Mapping

CO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	H	H	M	M	H	H
$\mathbf{C O 2}$	H	H	H	H	M	H	M	H	H
$\mathbf{C O 3}$	H	M	H	H	H	M	H	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	H	H	H	H	H	H	H	H

H - HIGH; M - MEDIUM; L - LOW.

Units	Content
Unit I	Non-linear Programming:Introduction - Formulating a Non-linear Programming Problem (NLPP) - General Non-linear Programming Problem - Constrained Optimization with Equality Constraints - Constrained Optimization with Inequality Constraints. Chapter 27: Sections: 27.1-27.5.
Unit II	Non-linear Programming - Methods: Introduction - Quadratic Programming - Wolfe's Modified Simplex Method - Beale's Method. Chapter 28: Sections: 28.1, 28.4 - 28.6.
Unit III	Simulation: Introduction - Why simulation? - Process of simulation - Simulation models - Even- type simulation - Generation of random numbers - Monte-Carlo Simulation. Chapter 22: Sections:22.1 - 22.7.
Unit IV	Simulation: Simulation of inventory problems - Simulation of a Queueing System - Simulation of Job Sequencing. Chapter 22: Sections: 22.8, 22.9 and 22.12.
Unit V	Resource Analysis in Network scheduling: Introduction - Project cost - Time-cost Optimization Algorithm. Chapter 26: Sections: 26.1 - 26.3.

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Kanti Swarup, Gupta P.K., Operations Research, Sultan Chand \& Sons, New Delhi - 2014.

Reference Books:

1. Philips T, Ravindran A and Solberg J, Operations Research: Principles and Practice, John Willey \& Sons, 1976.
2. Taha H. A, Operation Research - An introduction, Prentice Hall of India Pvt. Ltd, New Delhi, 2006.
3. P. K Gupta \&D. S Hira, Operations Research, S. Chand and company Ltd, New Delhi, 2014.
4. S. Dharani Venkatakrishnan, Operations Research principles problems, Keerthi Publishing house Pvt. Ltd, 1994.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://www.youtube.com/watch?v=xGkpXkAnWU\&list=PLjc8ejfjpgTf0LaDEHg LB3gCHZYcNtsoX\&index=30
2. https://www.youtube.com/watch?v=h0bdo06qNVw\&list=PLjc8ejfjpgTf0LaDEHg LB3gCHZYcNtsoX\&index=33
3. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{H} 58 \mathrm{TPQNr} 2 \mathrm{kM} \& \mathrm{list=PLjc8ejfjpgTf0LaDEH}$ gLB3gCHZYcNtsoX\&index=34

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:DR. J. JAYASUDHA	Name: Dr. V.INTHUMATHI	Name:	Name:
Signature:	V. Sthumeth:		
	Signature:	Signature:	Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UMS6S1	Title	Batch:	$2021-2024$
		FINANCIAL MATHEMATICS -II	Semester:	VI
Lecture Hrs./Week or Practical Hrs./Week	1	Credits:	2	

Course Objective

The course on financial mathematics focuses on the mathematical properties and relations between concepts of financial and currency markets in investment and other economic activities.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	use a generalized cash-flow model to describe financial transactions.	K2
CO2	describe how a loan may be repaid by regular instalments of interest and capital.	K3
CO3	analyze straightforward compound interest problems and solve resulting equations of value, including for the implied rate of return.	K4
CO4	apply discounted cash flow techniques to investment project appraisal.	K3
CO5	communicate the difference in capital budgeting decision tools like Net Present Values, Interval Rates of Return and Discounted Payback Periods.	K3

Mapping

$\mathbf{P O} / \mathrm{PSO}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	M	H	M	M	M	M	M
$\mathbf{C O 2}$	H	H	H	H	M	M	M	M	M
$\mathbf{C O 3}$	H	H	M	H	M	M	M	M	M
$\mathbf{C O 4}$	H	H	H	H	M	M	M	M	M
$\mathbf{C O 5}$	H	H	M	H	M	M	M	M	M

H - HIGH; M - MEDIUM; L - LOW.

Units	Content	Hrs.
Unit I	Annuities payable continuously - Definition and derivation of $\bar{a}_{\bar{n}} \mid, \quad(I a)_{\bar{n}}$, $\overline{s_{n}} \overline{\bar{n}}, \quad(I \bar{s})_{n} \bar{l}$ - Annuities where payments are increasing continuously and payable continuously - definition and derivation of Annuities where payments and interest both are varying \qquad	3
Unit II	Equated monthly installments - Loan schedules- Principal and interest portion of annuity payments - Calculation of outstanding loan amount at any given time ' t '. Solving problems associated with the above topics.	2
Unit III	Calculation of Purchase price to yield a specified rate of return - Dealing with changes arising due to modification of the original terms and conditions of the loans. Solving problems associated with the above topics.	3
Unit IV	Appraisal of Projects - Cash flows, net present value and accumulated profit in an investment project. Solving problems associated with the above topics.	3
Unit V	Internal rate of return, Payback period, Discounted payback period. Solving problems associated with the above topics.	2
	Total Contact Hrs.	13

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Books:

1. CM 1-Actuarial Mathematics-Combined material pack-The Actuarial Education Company on behalf of the Institute and Faculty of Actuaries, London, 2019.
2. IC - 81- Mathematical Basis of Life Assurance - published by Insurance Institute of India,
3.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://youtu.be/chzYFfBxU_Y
2. https://youtu.be/LuK0PiD0EsM

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:Dr. V.INTHUMATHI V Suttument: Signature:	Name: Dr. V.INTHUMATHI V gittuenti: Signature:	Name: Signature:	Name: Signature:

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UMS6S2		Batch:	$2021-2024$
			Semester:	VI
Lecture Hrs./Week or Practical Hrs./Week	1	CRYPTOGRAPY	Credits:	2

Course Objective

To enable the learners to explore the basic techniques of modern cryptography and to revisit some mathematical results which are foundations for several modern cryptographic algorithms.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO 1	understand the fundamentals of cryptography including data and advanced encryption standards.	K 2
CO 2	learn to encrypt and decrypt messages using block ciphers.	K 2
CO 3	acquire knowledge about the uses of RSA crypto system.	K 3
CO 4	learn about how to maintain the confidentiality, Integrity and availability of a data.	K 4
CO 5	analyze and apply the concepts of public number generation and public key encryption in real life situations.	K 4

Mapping

CO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
$\mathbf{C O 1}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 2}$	H	H	M	H	H	H	M	H	H
$\mathbf{C O 3}$	H	M	M	H	M	M	M	H	H
$\mathbf{C O 4}$	H	H	H	H	H	H	H	H	H
$\mathbf{C O 5}$	H	M	H	H	H	H	M	H	H

H - HIGH; M - MEDIUM; L - LOW.

Unit	Content	Hrs
Unit-I	Encryption: Encryption Schemes, Symmetric and Asymmetric Cryptosystems, Cryptanalysis, Alphabets and Words, Permutations, Block Ciphers.	3
Unit-II	Encryption: Matrices and Linear Maps, Affine Linear Block Ciphers, Vigenere, Hill and Permutation Ciphers.	3
Unit-III	DES: Feistel Ciphers, DES Algorithm.	3
Unit-IV	Public Number Generation: Trial Division, Fermat Test, Carmichael Numbers, Miller-Rabin Test.	2
Unit-V	Public Key Encryption: Idea, Security, RSA Cryptosystem.	2
	Total Contact Hrs.	$\mathbf{1 3}$

Pedagogy:

Direct Instruction, Flipped Class, Power Point Presentation.

Assessment Methods:

Seminar, Chalk and talk, Quiz, Assignments, Group Task.

Text Book:

Buchmann, J. (2001). Introduction to Cryptography. Second edition. Springer verlog.

Reference Books

1. Holfstein, J. Pipher, J. and Silverman, J.H. An Introduction to Mathematical Cryptography. Springer.
2. Rossen, K.H. Cryptography theory and practice. Discrete Mathematics and applications.

Related Online Contents[MOOC, SWAYAM,NPTEL, Websites etc.,]

1. https://youtu.be/5jpgMXt1Z9Y
2. https://youtu.be/5jpgMXt1Z9Y

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:	Name: Dr. V.INTHUMATHI	Name:	Name:
	Venthienthi:		
Signature:	Signature:	Signature:	Signature:

VALUE ADDED COURSE

Programme Code:	B.Sc.	Programme Title:	Mathematics	
Course Code:	21UMS6VA	Title	Batch:	$2021-2024$
		Semester:		
Lecture Hrs./Week or Practical Hrs./Week	-	PYTHON TRAINING	Credits:	2^{*}

Units	Content	Hrs.
Unit I	Basics of python programming Features Of Python - The Future Of Python-Writing And Executing First Python Program -Literal Constants: Numbers, Strings-Variables And Identifiers-Data Types: Assigning Or Initializing Values To Variables, Multiple Assignment, Multiple Statements On a Single Line.	5
Unit II	Decision Control Statements\&Functions Basic Loop Structures/Iterative Statements:While loop, for Loop, Nested Loops-The Break Statement-The Continue Statement-The pass Statement- The Else Statement Used With Loops. Need for Functions-Function Declaration, Function Call-Function Parameters, Variable Scope and Lifetime: Local and Global Variables, Using the Global Statement.	8
Unit III	Functions\&Modules More on Defining Functions: Required Arguments, Keyword Arguments, Default Arguments, Variable-Length Arguments, Lambda Functions or Anonymous Function. The from an Important Statement-Name of Module, Making Your own Modules-The dir() Function, The Python Module-Modules and Name Spaces-Packages in Python, Standard Library Modules-Globals(), Locals(), and Reload(), Function Redefinition.	7
Unit IV	(
Python Strings Concatenating,Appending, and Multiplying Strings-Strings or Immutable- String Formatting Operator-Built-in String Methods and Functions-Slice, Operations: Specifying Stride While Slicing Strings-ord() and chr() Functions in and not in operators, Comparing Strings-Iterating String-The String Module.	5	

Unit V	File Handling File Path-Types of Files: ASCII Text Files, Binary Files-Opening and Closing Files: The Open() Function, The File Object Attributes, The Close() Method Reading and Writing Files: Write() and Writelines() Methods, Append() Method, The Read() and Readlines() Methods, Opening Files using with Keyword, Splitting Words, Some Other Useful File Methods, File Positions, Renaming and Deleting Files.	5
	Total Contact Hrs.	$\mathbf{3 0}$

Course Designed by	Verified by HOD	Checked by	Approved by
Name and Signature	Name and Signature	CDC	COE
Name:	Name: Dr. V.INTHUMATHI	Name:	Name:
Signature:	Vignature:	Sithenth:	Signature:

[^0]: * In Theory ESE, Students will write Examination Maximum Marks as 70 and it will be reduced

