DEPARTMENT OF BOTANY

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE (AUTONOMOUS)

POLLACHI - 642 001

SYLLABUS

CBCS & OUTCOME BASED EDUCATION

For the students admitted during 2020 - 2023

B.Sc., BOTANY

&

ALLIED ZOOLOGY

REVISED ON THE BOARD OF STUDIES
HELD ON FEBRUARY 2020

NGM COLLEGE

Vision

Our dream is to make the college an institution of excellence at the national level by imparting quality education of global standards to make students academically superior, socially committed, ethically strong, spiritually evolved and culturally rich citizens to contribute to the holistic development of the self and society

Mission

Training students to become role models in academic arena by strengthening infrastructure, upgrading curriculum, developing faculty, augmenting extension services and imparting quality education through an enlightened management and committed faculty who ensure knowledge transfer, instil research aptitude and infuse ethical and cultural values to transform students into disciplined citizens in order to improve quality of life.

DEPARTMENT OF BOTANY

Vision

The Department of Botany aims to achieve high quality education and research relevant to local, regional and national needs and through knowledge sharing with leading researchers and educators across the country. We foster an exciting and intellectually stimulating atmosphere for all in a co-operative and positive environment.

Mission

To bring confidence in the lifestyle of any Botany student whose stay will ensure proficiency and competency in the subjects thought. We inculcate the habit of excellence in all the learning activities so as to ensure employability.

PROGRAMME OBJECTIVES

- 1. To impart quality education to meet the demands of higher education and research in Botany
- 2. To develop a competitive edge among the students to meet out their employability

PROGRAMME SPECIFIC OUTCOMES

- PSO1 To appreciate and understand the diversity of cellular forms, lower plants to higher plants
- PSO2 To introduce the theoretical knowledge and basic concepts on Biomolecules, Microbes, Plant Structure, Function and Evolution
- PSO3 To get hands-on training and practical knowledge in the preparation of microsections, herbarium, quantifying biomolecules and other basic techniques
- PSO4 To create interest in identification of plants using Floral characters, genetic traits and Molecular markers
- PSO5 To update the students with modern trends in Plant biology and introduce the interdisciplinary approach

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE, POLLACHI.

DEPARTMENT OF BOTANY B.Sc., BOTANY SCHEME OF EXAMINATION (I -VI SEMESTER) (FOR CANDIDATES ADMITTED DURING THE ACADEMIC YEAR 2020-2023)

(CBCS for under graduate programmes with language for 4 semesters)

			- / ek	of s		Max. Marks		
Part No	Course Code	Course title	Lecture+ Tutorial/ Practical Hours/ week	Duration of Exam Hrs	Internal	End-of- Semester	Total	Credit Point
	Semester I							
I	20UTL101	Tamil/Hindi Paper – I	6	3	30	70	100	3
II	20UEN101	English Paper – I	5	3	30	70	100	3
III	20UBY101	Major Paper I - Plant Diversity I (Phycology, Mycology and Bryology)	9	3	30	70	100	4
	20UBY1A1	Allied - Paper I Zoology	7	3	30	70	100	3
IV	20UHR101	Human Rights	1	2	-	50	50	2
	20HEC101	Human Excellence - Personal values & SKY yoga practice - I	2	2	25	25	50	1
V		Extension Activities (Annexure –I)						
							500	16
		Semester II						
I	20UTL202	Tamil/ Hindi Paper – II	6	3	30	70	100	3
II	20UEN202	English Paper – II	5	3	30	70	100	3
III	20UBY202	Major Paper II Plant Diversit II (Pteridophytes Gymnosperm and Palaeobotany)		3	30	70	100	4
	20UBY203	Major Practical I – Paper III (Plant diversity I & II (Phycology, Mycology and Bryology & Pteridophytes Gymnosperms and Palaeobotany)	2	3	40	60	100	4
	20UBY2A2	Allied - Paper II Zoology	7	3	30	70	100	3
	20UBY2A3	Allied - Paper III Practical	2	3	40	60	100	4
IV	20EVS201	Environmental Studies	2	2	ı	50	50	2
	20HEC202	Human Excellence - Family values & SKY yoga practice- I	1 2	2	25	25	50	1
V		Extension Activities (Annexure –I)						
							700	24

		Semester III						
I	20UTL303	Tamil/ Hindi Paper – III	5	3	30	70	100	3
II	20UEN303	English Paper – III	6	3	30	70	100	3
III	20UBY304	Major Paper IV- Anatomy and Embryology	9	3	30	70	100	4
	20UBY3A4	Allied Paper IV - Chemistry	8	3	30	70	100	3
IV	20UBY3N1/ 20UBY3N2	Skill based subjects (Non major electives)- Landscape designing/ Herbal cosmetics *Basic Tamil paper I	Skill based subjects (Non major electives)- Landscape designing/ Herbal 1 2 - 50 cosmetics			50	2	
	20HEC303	Human Excellence - Professional values & SKY yoga practice- III	2	2	25	25	50	1
V		Extension Activities (Annexure –I)						
							500	16
T		Semester	IV	l	1		T	
I	20UTL404	Tamil/ Hindi Paper – IV	5	3	30	70	100	3
II	20UEN404	English Paper – IV	6	3	30	70	100	3
III	20UBY405	Major Paper V – Cell Biology, Biochemistry and Biophysics	6	3	30	70	100	4
	20UBY406	Major Practical II - Paper VI (Anatomy & Embryology, Cell Biology, Biochemistry and Biophysics)	2	3	40	60	100	4
	20UBY3A5	Allied - Paper V - Chemistry	6	3	30	70	100	3
	20UBY3A6	Allied paper VI – Chemistry Practical	2	3	40	60	100	4
IV	20UBY4N3/ 20UBY4N4	Skill based subjects (Non major electives)- (Remote sensing and natural resource management/ Bioinformatics) *Basic Tamil paper II	1	2	-	50	50	2
	20HEC404	Human Excellence – Social values & SKY yoga practice-IV	2	2	25	25	50	1
V		Extension Activities (Annexure –I)			50		50	1
							750	25
			Semester V	V				
III	20UBY507	Major Paper – VII - Taxonomy of Angiosperms	6	3	30	70	100	4
	20UBY508	Major Paper VIII - Microbiology and plant	5	3	30	70	100	4

		pathology						
	20UBY509	Major Paper IX – Genetics and Evolution	5	3	30	70	100	4
	20UBY510	Major Paper X – Biotechnology & Genetic 5 3 30 70 Engineering				100	4	
	20UBY511	Elective -I Mathematics for Biologists	5	3	30	70	100	5
IV	20UBY5S1/ 20UBY5S2	Skill based subjects (Major electives)- Network and Information security/ Cyber Security- Ethical Hacking	Skill based subjects (Major electives)- Network and Information security/ Cyber Security- Ethical		50	2		
	20GKL501	General Knowledge & General Awareness (SBE)	SS	2	-	50	50	2
	20HEC505	Human Excellence - National values & SKY yoga practice- 2 2 25 25			50	1		
							650	26
		Semester	VI					
III	20UBY612	Major Paper XII – Plant Physiology	6	3	30	70	100	4
	20UBY613	Major Paper XIII – Economic & EthnoBotany	5	3	30	70	100	4
	20UBY614	Major Paper XIV - Horticulture & Plant Breeding	5	3	30	70	100	4
	20UBY615	Elective II – Bioinformatics	5	3	30	70	100	5
	20UBY616	Elective – III – Habitat Ecology	5	3	30	70	100	5
	20UBY617	Major Practical III – Paper XV (for V Sem theory papers)	2	3	40	60	100	4
	20UBY618	Major Practical IV (for VI Sem theory papers)	2	3	40	60	100	4
IV	20UBY6S3 20UBY6S4	Skill based subjects (Major electives)- Forest Botany/ Mushroom cultivation	1	2	-	50	50	2
	20HEC606	Human Excellence - Global values & SKY yoga practice- VI	2		25	25	50	1
		** -					800	33
		**Grand total					3900	140

^{*} The credits given are applicable only to the students who opt for Basic Tamil paper and the credits for Human Excellence papers cannot be given to them.

Bloom's Taxonomy Based Assessment Plan

^{**}Grand total should be equal/below 3900 (For UG Programmes); 2550 (For PG Programmes) SS – Self study, SBE – Skill Based Elective, NME–Non Major Elective

PART I, II & III

		Internal: 25			External: 75
Bloom's Taxonomy Section	Knowledge Level	Section	Mark	Description	Total
K	K1	1-5 Section-A	5x1	MCQ(One question from each unit)	5
	K1	6-10 Section-A	5x1	Short answers (One question from each unit)	5
U	K2	11-15 Section-B	5x4	Short answers Either/ Or type (One question from each unit)	20
A	K3	16-21 Section-C	4x10	Detailed Four out of six (Question no.16 is compulsory) 17-21 Answer any three	40
				Total	70

Bloom's Taxonomy Section	Knowledge level	Section	Pattern	External	: 50
				Marks	Total
K	K1	Part A	1-5 Multiple choice with 4 options	5x1	5
U	K2		6-10 Short answers (One question from each unit)	5x1	5
A	К3	Part B	Open choice (5 out of 8 Questions)	5x8	40
				Total :	50

- Communicative English and General Awareness papers include 60% objective type of questions and 40% descriptive type of questions
- GK 100% objective type of questions (online exam)

The marks and credits for Extension activities are given by the corresponding Departments

SYLLABUS

Programme	B.Sc.,	Programme Title	Bachelor of Science (BO	TANY)
Code				
Course code	20UBY101	Course Title		2020-2023
		PLANT DIVERSIT	TY I (PHYCOLOGY,	Semester 1
		MYCOLOGY ANI	O BRYOLOGY)	
Hrs/Week: 5				Credits 4

Course Objective

- To understand the morphology, structure, life cycle of the selected forms of Algae, Fungi, Lichens and Bryophyte.
- To appreciate the diversity of lower plants

Course Outcome

K1	CO1	To differentiate lower plants like Algae, Fungi, Lichens and Bryophytes
K2	CO2	To understand the morphology and lifecycle of Algae, Fungi, Lichens, Bryophyte
K3	CO3	To apply different classification systems to appreciate the diversity of lower
		plants
K4	CO4	To identify the economically important Algae, Fungi, Lichens and Bryophytes

Unit	Content	Hrs
Unit I	General characters of algae - Classification of algae (Fritsch) -	13
	Distribution, structure, reproduction and life cycle of the following:	
	Cyanophyceae (Nostoc), Chlorophyceae (Oedogonium, Chara) and	
	Phaeophyceae (Sargassum).	
Unit II	Distribution, structure, reproduction and life cycle of the following:	13
	Rhodophyceae (Polysiphonia) and Bacillariophyceae (Cyclotella	
	&Pinnularia) - *Economic importance of algae.	
Unit III	General characters of Fungi - Mode of nutrition - Classification of	13
	Fungi (Alexopoulos, 1972) - *Economic Importance of Fungi -	
	Structure, reproduction and life cycle of Zygomycetes- Mucor,	
	Ascomycetes – Penicillium, Yeasts	
Unit IV	Structure, reproduction and life cycle of Basidiomycetes - <i>Puccinia</i> .	13
	Lichens: Occurrence, Morphology, structure, Reproduction and	
	Economic importance.	
Unit V	General characters and classification of Bryophytes (Reimers),	13
	Distribution, structure, development and reproduction of Riccia,	
	Anthoceros and Polytrichum.	

*Self study topics

Power point Presentations, Seminar, Quiz, Assignment,

Text Books:

- 1. Smith, G.M., 1971. Cryptogamic Botany Vol. I Algae & Fungi. Tata McGraw Hill Publishing Co., New Delhi.
- 2. Smith, G.M., 1971. Cryptogamic Botany Vol. II Bryophytes &Pteridophytes. Tata McGraw Hill Publishing Co., New Delhi.
- 3. Sharma O.P. 1992. Text book of Thallophytes. McGraw Hill Publishing Co., New Delhi.

Reference Books:

- 4. Sharma P. D. 1991. The Fungi, Rastogi& Co., Meerut
- 5. Hirendra Chandra Gangulee, Kumuel Shankar Das Chittatosh Datta, 1968. 3rdEdn. College Botany Vol. I & II, New central book agency, Calcutta.
- 6. Dube H. C. 1990. An introduction to Fungi. Vikas Publishing House Pvt. Ltd., Delhi.

CO PSQ	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	M	Н	Н
CO2	Н	Н	M	Н	Н
CO3	Н	Н	M	Н	L
CO4	Н	Н	M	Н	L

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. A. Logamadevi			

Programme	B.Sc.,	Programme Title Bachelor of Science (Zoology)		ogy)
Code				
Course code		Course Title		2020-2023
20UZY1A1		ANCILLARY BOTANY	PAPER - I (PLANT	Semester 1
		DIVERSITY, ANATOM	Y, EMBRYOLOGY AND	
		PLANT PATHOLOGY)		
Hrs/Week 6				Credits 3

- To appreciate the diversity in lower plants
- To understand the anatomy of angiosperms
- To know the embryo development and fertilization in higher plants
- To teach important plant diseases, causal organisms and control.

Course Outcome

K1	CO1	To recollect the existing diversity among lower plants
K2	CO2	To understand the internal structure and embryology of angiosperms
К3	CO3	To analyze the economically important plant diseases and their control measures
K4	CO4	To obtain the skill of technically draw the plant tissues

Unit	Content	Hrs
Unit I	Structure, life history and *economic importance of the following types: Algae: <i>Oedogonium</i> , Diatoms and <i>Polysiphonia</i> , Fungi: <i>Penicillium</i> and <i>Agaricus</i> , Lichens.	16
Unit II	A brief account of the structure, reproduction and life cycle of the following genera (excluding development of sex organs): Bryophyte: <i>Riccia</i> , Pteridophyte: <i>Lycopodium</i> and Gymnosperm: <i>Cycas</i> .	16
Unit III	Simple permanent tissues – parenchyma, collenchyma and sclerenchyma - complex tissues – xylem and phloem - cambium – Primary structure of dicot stem (<i>Tridax</i>), monocot stem (<i>Sorghum</i>), dicot root (Bean), monocot root (<i>Zea mays</i>), Internal structure of dorsiventral and isobilateral leaf. Normal secondary thickening in dicot stems (<i>Polyalthia</i>).	15
Unit IV	Anther structure – Microsporogenesis – male gametophyte – ovule structure – megasporogenesis - 8 nucleate embryo sac – double fertilization and triple fusion – endosperm (nuclear and cellular) – structure of dicot and monocot embryos (development excluded) – polyembryony - parthenocarpy.	15
Unit V	Plant diseases – classification – host – pathogen types and interaction – disease cycle – symptoms - viral disease (TMV) - bacterial disease (citrus canker) - fungal disease (red rot of sugarcane) – *Plant disease control – physical, chemical and biological methods.	15

Power point Presentations, Seminar, Quiz, Assignment,

Text Books:

- 1. Hirendra Chandra Gangulee, Kumuel Shankar Das Chittatosh Datta, 1968. 3rdEdn. College Botany Vol. I & II, New central book agency, Calcutta.
- 2. Pandey B.P, 1986, Text Book of Botany (College Botany) Vol I and II, S.Chand and co. New Delhi.
- 3. *Narayanaswamy*, R.V & Rao, K.N .1976. *Outlines of Botany*, S. Viswanthan. Printers & Publishers, Madras.
- 4. Bhojwani, S.S. and Bhatnagar, S.P., 2009. The embryology of angiosperms, Vikas publishing house pvt Ltd., New Delhi.
- 5. Pandey, B.P., 1987. Plant anatomy, 4thEdn., S. Chand & Company, New Delhi.

Reference Books:

- 6. Gilbert, M. Smith, 1972. Cryptogamic botany: Algae and Fungi, Vol I. 2ndEdn. Tata McGraw Hill Publishing Ltd., New Delhi.
- 7. Krishnamoorthy, K.V. and K.N. Rao, 1984. Angiosperms, Viswanathan printers pvt Ltd., Chennai.
- 8. Hirendra Chandra Gangulee and Ashok Kumar Kar, 1970. College Botany Vol II. New Central Book Agency, Calcutta.
- 9. Katherine Esau, 1953. Plant anatomy, 2ndEdn, Wiley Eastern pvt. Ltd., New Delhi.
- 10. Vashishta, P.C., 1997. Botany for degree students Pteridophytes Part IV, S. Chand & Company Ltd., New Delhi.
- 11. Reinert J. and Bajaj, Y.P.S., 1988. Applied and Fundamental aspects of Plant cell and tissue organ culture, Narosa Publishing house, New Delhi.

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	Н	L
CO2	Н	S	Н	Н	M
CO3	Н	S	M	Н	M
CO4	Н	S	Н	Н	M

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. E. Neelamathi	Dr. R. Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)	
Code				
Course code		Course Title		2020-2023
20UBY202		PLANT DIVERSITY II	(PTERIDOPHYTES,	Semester 2
		GYMNOSPERMS AN	D PALAEOBOTANY)	
Hrs/Week 5	,			Credits 4

- To study the morphology, life cycle and economic value of selected Pteridophytes, Gymnosperms
- To learn the concept of Evolution and Palaeobotany

Course Outcome

K1	CO1	To appreciate the morphology and lifecycle of Algae, Fungi, Lichens, Bryophyte
K2	CO2	To understand the concepts of evolution, Palaeobotany and evolution of land
		plants
K3	CO3	To identify the economically important Pteridophytes and Gymnosperms
K4	CO4	To analyse the fossil slides and specimen

Unit	Content	Hrs
Unit I	Pteridophytes: General characters and classification of	13
	Pteridophytes (Reimers) - stelar evolution - heterospory and origin	
	of seed habit – structure, development and reproduction of	
	Psilotopsida (<i>Psilotum</i>) and Lycopsida (<i>Lycopodium</i>)	
Unit II	Structure, development and reproduction of Ligulopsida	13
	(Selaginella) and Filicopsida (Gleichenia). *Economic importance	
	of Pteridophytes.	
Unit III	Gymnosperms: General characters and classification of	13
	Gymnosperms (Sporne, 1965) – structure, development and	
	reproduction of <i>Cycas</i> .	
Unit IV	Structure development and reproduction of <i>Gnetum</i> – affinities of	13
	Gnetum with Angiosperms *Economic importance of	
	Gymnosperms.	
Unit V	Palaeobotany: Geological time scale – fossils - fossilisation - kinds	13
	of fossils - detailed study of Rhynia, Lyginopteris, Lepidodendron,	
	Lepidocarpon, Lepidostrobus and Williamsonia.	

^{*}Self study topics

Power point Presentations, Seminar ,Quiz, Assignment,

Text Books:

- 1. Smith, G.M., 1971. Cryptogamic Botany Vol. II Bryophytes & Pteridophytes. Tata McGraw Hill Publishing Co., New Delhi.
- 2. Hirendra Chandra Gangulee, Kumuel Shankar Das Chittatosh Datta, 1968. 3rdEdn. College Botany Vol. II, New central book agency, Calcutta.
- 3. Sporne K.R. 1991. The morphology of Gymnosperms. B.I. Publications Pvt. Bombay Calcutta, Delhi.

Reference Books:

- 4. Sharma O.P. 1992. Text book of Pteridophyta, Macmillan India Ltd., New Delhi.
- 5. Wilson, N.S. and Rothwell, G.W. 1993. Palaeobotany and the evolution of plants (2nd edition), Cambridge University Press, UK.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	M	M	Н
CO2	S	Н	M	M	L
CO3	S	Н	Н	M	Н
CO4	S	S	L	M	L

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.M.Latha Isabel	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science (BO		OTANY)
Code				
Course code	20UBY203	Course Title		2020-2023
		MAJOR PRACTICAL - I (PLANT		Semester 2
		DIVERSITY I & II)		
Hrs/Week 2				Credits 4

- To get hands on knowledge on microbial culture techniques
- To understand the plant diversity, thallus organization of selected forms
- To learn about the fossilized plant forms and Plant evolution.

Course Outcome

K1	CO1	To revise the morphology and reproductive structures in Algae, Fungi, Lichens,
		and Bryophyte
K2	CO2	To get the picture of internal structures and spore bearing parts of selected plant
		forms
K3	CO3	To compare the life cycles of Algae, Fungi, Lichens, Bryophytes, Pteridophytes
		and Gymnosperms
K4	CO4	To prepare micro sections and to professionally draw plant sketches, to identify
		fossil specimen and slides

Unit	Content	Hrs
Unit I	A detailed study of thallus organization and reproductive structures	5
	of the following forms:	
	Algae – Nostoc, Oedogonium, Chara, Sargassum, Polysiphonia,	
	Cyclotella and Pinnularia. Fungi - Mucor, Penicillium, Yeast and	
	Puccinia. Lichen –Usnea.	
Unit II	A detailed study of morphology, anatomy and structure of vegetative	5
	& spore bearing parts of the following genera:	
	Bryophytes -Riccia, Anthoceros and Polytrichum.	
Unit III	A detailed study of morphology, anatomy and structure of vegetative	5
	& spore bearing parts of the following genera: Pteridophytes –	
	Psilotum, Lycopodium, Selaginella and Gleichenia.	
Unit IV	A detailed study of morphology, anatomy and structure of vegetative	6
	& spore bearing parts of the following genera:	
	Gymnosperms - Cycas and Gnetum.	
Unit V	A detailed study of the following fossil genera	6
	Rhynia, Lyginopteris, Lepidodendron, Lepidocarpon,	
	Lepidostrobus and Williamsonia from fossil specimen/parts or	
	slides.	

Preparing micro sections and mounting, Spotters, Specimen, Slides.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	M	S	Н	L
CO2	S	M	S	Н	Н
CO3	S	M	S	Н	L
CO4	S	M	S	Н	M

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan		Dr.R.Muthukumaran
Dr.K.Rajalakshmi			

Programme	B.Sc.,	Programme Title Bachelor of Science (Zoo		(Zoology)	
Code					
Course code		Course Title		2020-2023	
20UZY2A2		ANCILLARY BOTANY PAPER - II (TAXONOMY Semester 2			
		OF ANGIOSPERMS, PHYSIOLOGY,			
		HORTICULTURE, MEDICINAL BOTANY &			
		PLANT BIOTECHNOLOGY)			
Hrs/Week 6				Credits 3	

- To know the diversity in flowering plants
- To understand the physiology of angiosperms
- To learn the available horticultural techniques to raise new plantlets
- To study the selected medicinal plants and popular drugs from them
- To understand the basics of plant biotechnology

Course Outcome

K1	CO1	To appreciate the morphology and lifecycle of selected Angiosperms
K2	CO2	To understand the concepts of Plant functions, Plant propagation, Plant tissue
		culture
K3	CO3	To identify flowering plants and medicinal plants in their habit.
K4	CO4	To know-how different cutting, layering, grafting, budding methods to propagate
		different plants
K5	CO5	To learn the basic concept of Plant Biotechnology

Unit	Content	Hrs
Unit I	Plant Morphology (Terms only) - Vegetative and floral characters	16
	and Economic importance of the following families: Annonaceae,	
	Rutaceae, Fabaceae, Rubiaceae, Acanthaceae, Asteraceae,	
	Lamiaceae, Amarantaceae, Euphorbiaceae and Cannaceae.	
Unit II	Photosynthesis – A brief account of light and dark reactions with	16
	reference to C3 plants - Respiration - glycolysis, krebs cycle,	
	oxidative phosphorylation –Nitrogen Cycle- Growth regulators –	
	auxins, gibberellic acid and ABA – Senescence – PCD.	
Unit III	Horticulture: Seed propagation- asexual propagation and its	15
	advantages - cutting, layering, grafting and budding -	
	*hydroponics – bonsai.	
Unit IV	Pharmacognosy – definition and history – Plant sources of drugs –	15
	Organized drugs, unorganized drugs – dried latex, dried juices, dried	
	extracts, gums and mucilages, oleoresins and oleo-gum resins -	
	Adulteration of plant drugs.	
Unit V	Plant Biotechnology - plant tissue culture: totipotency -	15
	micropropagation – meristem culture – Haploids – Synthetic seeds	
	- Cryopreservation - Gene transfer medthods - Transgenic plants -	
	Bt cotton and *Golden rice.	

^{*}Self study topics

Power point Presentations, Seminar, Quiz, Assignment

Text Books:

- 1. Hirendra Chandra Gangulee, Kumuel Shankar Das Chittatosh Datta, 1968. 3rdEdn. College Botany Vol. I & II, New central book agency, Calcutta.
- 2. Susil Kumar Mukerjee, 1984. College botany, Vol.III. New Central Book agency, Calcutta.
- 3. Jain, V.K., 1974. Fundamentals of plant physiology, 6th Edn., S. Chand & Company Ltld., New Delhi.

Reference Books:

- 4. George, H.M., Lawrence, 1958. Taxonomy of vascular plants. The Macmillan Company, Newyork.
- 5. Pandey, B.P. 1997. Economic botany, C. Chand & Company Ltd., New Delhi.
- 6. Salisbury, F.B. and Rose, 1986. Plant physiology, 3rdEdn, C.B.S. Publishers, New Delhi.
- 7. Kumar, N., Abdul Khader, JBM., M.D. Rangaswami, P. and I.Irullappan, 1993. Introduction to species, Plantations crops, Medicinal and aromatic plants, Rajalakshmi publication, Nagercoil, Tamilnadu, India.
- 8. Wallils, T.E.,1985. Text book of pharmacognosy, 5thEdn. CBS publishers & distributors, Delhi.
- 9. Kumaresan, V., 1998. Biotechnology. Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 10. Ignacimuthu, S.,1996. Applied Biotechnology. Tata McGraw Hill Publishing Company Ltd., New Delhi.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	Н	S	L
CO2	M	S	M	M	M
CO3	S	Н	M	S	M
CO4	L	M	Н	M	Н
CO5	M	Н	Н	S	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.K.Rajalakshmi	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science (Zoology)		
Code				
Course code	19UZY2A3	Course Title		2020-2023
		ANCILLARY BOTANY PRAC	TICAL	Semester 2
Hrs/Week 2				Credits 4

- To know the diversity, morphology, anatomy and reproductive structures of selected lower plants and higher plants.
- To impart the basic plant breeding, horticultural techniques and plant diseases.
- To introduce important medicinal plants and principles of plant biotechnology

Course Outcome

K1	CO1	To recollect some selected lower plants and higher plants in their habit
K2	CO2	To understand the internal structure, embryology and physiology of angiosperms
K3	CO3	To analyze the economically important plant diseases and their control measures
K4	CO4	To prepare microsections and obtain the skill of technically draw the plant tissues
K5	CO5	To propagate plants using simple horticultural techniques

Unit	Content	Hrs
Unit I	Plant Biodiversity Algae- Oedogonium, Diatoms and Polysiphonia, Fungi- Penicillum and Agaricus, Lichens - Usnea, Bryophyte - Riccia, Pteridophyte - Lycopodium and Gymnosperm - Cycas, Symptoms and causal organisms and control measures of TMV, citrus canker and red rot of sugarcane.	6
Unit II	Plant Anatomy and Embryology Parenchyma, collenchyma, sclerenchyma, xylem and phloem. Primary structure of dicot stem (<i>Tridax</i>), secondary structure of dicot stems (<i>Tridax</i> and <i>Polyalthia</i>). Permanent slides - structure of anther, ovule, embryo sac and embryo.	6
Unit III	Taxonomy of Angiosperms Morphology – Diagrams - A detailed study of the following families: Annonaceae, Rutaceae, Fabaceae, Rubiaceae, Acanthaceae, Asteraceae, Lamiaceae, Amarantaceae, Euphorbiaceae and Canaceae.	5
Unit IV	Plant Physiology (Demonstration) Photosynthesis - test tube and funnel experiment and light screen experiment. Respiration – Ganong's respiroscope (aerobic) and Kuhn's fermentation (anaerobic). Horticulture: Charts on cutting, layering and grafting.	5
Unit V	Pharmacognosy & Plant Biotechnology Plants yielding drugs: Spirulina, Penicillium, Ginkgo, Rauwolfia serpentina and Phyllanthus amarus. Plant biotechnology charts.	5

Slides, Demonstrations, Simple experiments using apparatus, Power point Presentations,

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	M	M	S	M
CO2	S	L	Н	S	M
CO3	S	M	S	Н	M
CO4	S	L	S	Н	Н
CO5	M	M	Н	Н	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi	Dr.R.Kannan		Dr.R.Muthukumaran
Dr. E. Neelamathi			

Programme Code	B.Sc.,	Programme Title Bachelor of Science (BOTANY)		
Course code	20UBY304	Course Title		2020-2023
		ANATOMY AND EMBRYOL	OGY	Semester 3
Hrs/Week 5				Credits 4

- To acquire knowledge about the entire plant growth and development.
- To know various anatomical features of flowering plants
- To understand the important events in embryo development and fertilization.

Course Outcome

K1	CO1	To know the theories on plant cell, tissues and cell division
K2	CO2	To understand the anatomy of various plant parts
K3	CO3	To analyze the internal structure and embryology of angiosperms
K4	CO4	To compare the growth and developmental pattern of dicots and monocots

Unit	Content	Hrs
Unit I	Anatomy: Plant body – meristems - Apical meristem – Shoot and	13
	root – theories – Cambium and its functions - permanent tissues -	
	simple and complex - Vascular bundles and its types -	
	differentiation – dedifferentiation – redifferentiation. Cell division –	
	mitosis.	
Unit II	Primary structure of stem and root (monocot and dicot) – normal	13
	secondary growth in dicot stem and dicot root – anomalous	
	secondary growth in dicot stem (Boerhaavia) and monocot stem	
	(Dracaena) - dicot root (Achyranthes) - wood structure (sap wood	
	& heartwood).	
Unit III	Leaf – epidermal tissues – trichomes– stomatal types – internal	13
	structure of monocot (Grass) and dicot (<i>Tridax</i>) leaves. Anatomy of	
	hydrophytic leaf (<i>Hydrilla</i>) and xerophytic leaf (<i>Casuarina</i>) – Nodal	
	anatomy.	
Unit IV	Embryology: Flower – anther structure - microsporangium -	13
	microsporogensis – structure & development of male gametophyte	
	– ovule – types –megasporangium - megasporogenesis (<i>Polygonum</i>	
	type) – structure and development of female gametophyte – types of	
	embryosac.	
Unit V	Pollination – double fertilization and triple fusion – endosperm –	13
	types – embryo – structure and development - dicot (<i>Capsella</i>) and	
	monocot (Najas) – polyembryony – formation of seed – fruit –	
	*parthenocarpy.	

^{*}Self study topics

Charts, Powerpoint presentation, Seminar, Quiz, Assignment

Text Books:

- 1. Bhojwani S.S. and Bhatnagar, S.P., 2000. The embryology of angiosperms. 4th edition, Vikas printing houses, New Delhi.
- 2. Esau K. 1977. Anatomy of seed plants. 2nd edition. John Wiley & Sons, New York.
- 3. Vashista P.C., 1997. Plant Anatomy, S. Chand & Co., New Delhi.

Reference Books:

- 4. Fahn A., 1974. Plant Anatomy, 2nd edition. Pergamon Press, Oxford.
- 5. Pandey B.P., 1985. Plant Anatomy, S and Chand & Co., New Delhi.
- 6. Maheswari P., 1971. An introduction to embryology of angiosperms. Tata McGraw Hill Publishing Co., New Delhi.
- 7. Swamy B.G.L. and Krishnamurthy, K.V., 1980. From flower to fruit: Embryology of Angiosperms, Tata McGraw Hill Publishing Co., New Delhi.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	M	M
CO2	Н	S	Н	M	L
CO3	M	Н	M	Н	M
CO4	Н	Н	Н	M	L

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Scien		nce
Code			(BOTANY)	
Course code	20UBY3N1	Course Title		2020-2023
		SKILL BASED ELECTIVE (NON MAJOR):		Semester 3
		LANDSCAPE		
		DESIGNING		
Hrs/Week 1				Credits 2

- To introduce the scope and essential elements of landscape.
- To learn various garden structures.

Course Outcome

K1	CO1	To know the Gardening types and features
K2	CO2	To understand the Landscape designing principles
K3	CO3	To analyze the uniqueness of indoor garden
K4	CO4	To create interest in making flower arrangements, kitchen garden and terrarium

Unit	Content	Hrs
Unit I	Landscape designing – principles and categories of landscaping -	3
	important ornamental plants –Manuring and Irrigation.	
Unit II	Gardening – indoor garden: hanging baskets and terrarium – layout and importance of terrace garden – public garden and its	3
	components.	
Unit III	Garden features - Lawn: layout – preparation of land – propagation – irrigation – weeding – pruning.	2
Unit IV	Glass house: applications and advantages – water garden - rockery – hydroponics – topiary - bonsai.	2
Unit V	Flower arrangement - cut flowers - role of botanical garden - <i>ex situ</i> , <i>in situ</i> conservation.	2

Text Books:

- 1. Kumar N., 1993. An introduction to horticulture, TNAU, Coimbatore.
- 2. Mani BhusanRao, 1964. Text book of Horticulture. Macmillan India Ltd., Newdelhi.
- 3. Pratibhatrivedi, 1996. Home Gardening. Indial Council of Agricultural Research, New Delhi.

Reference Books:

- 4. George Acquaah, 2004. Horticulture principles and practices. Prentice Hall of India Pvt Ltd., New Delhi.
- 5. Edmond, 1988. Fundamentals of Horticulture. MCGH Publications New Delhi.
- 6. Satya P. 2012. Plant Breeding. Books and allied Pvt Ltd. Kolkatta.

Powerpoint presentation, Discussion, Demonstration

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S
CO2	Н	Н	Н	Н	Н
CO3	Н	Н	Н	M	Н
CO4	S	Н	S	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science		ıce
Code		(BOTANY)		
Course code	20UBY3N2	Course Title		2020-2023
		SKILL BASED ELECTIVE (NON MAJOR): HERBAL COSMETICS		Semester 3
Hr/Week 1				Credits 2

• To understand the role of herbs as a source of natural and safe cosmetics.

Course Outcome

K1	CO1	To recollect the medicinal herbs and the need for herbal cosmetics
K2	CO2	To comprehend the principles behind herbal cosmetics
K3	CO3	To analyze the various personal care remedies using herbs
K4	CO4	To expose the students to prepare home recipes with available herbs

Unit	Content	Hrs
Unit I	Herbal cosmetics & Cosmeceuticals – introduction – principles –	3
	definition – history – Advantages of Herbal cosmetics over	
	synthetics and limitations	
Unit II	Herbal skin and hair care – Basic requirements of skin hair.	3
	Disorders of skin and hair-Herbal hair preparations	
Unit III	Herbal cosmetics- Aloe vera, carrot, turmeric, neem, Henna,	2
	Shihakai, Amla and Coconut oil. Aromatherapy	
Unit IV	herbal natural soap production process, herbal glycerine soap	2
	herbal Manicure and pedicure	
Unit V	Herbal home recipes – face pack, hair colorant – tooth powder	2
	mouth washes	

Text Books:

- 1. Babu, S.S., 2000. Herbal cosmetics Pushkal publishers, Mumbai.
- 2. Asharam,2002.Herbal Indian perfumes and cosmetics, Sri Satguru publications, New Delhi, India

D	•	1 1	•
Powerpoint	nrecentation	and Lier	nonetration
1 OWCI DOING	prosontation	and DCi	nonsuauon

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	Н	Н	Н
CO2	Н	S	Н	L	Н
CO3	Н	Н	Н	L	Н
CO4	S	Н	S	S	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. A. Logamadevi	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of So		cience
Code			(BOTANY)	
Course code	ourse code Course Title			2020-2023
20UBY405		CELL BIOLOGY, BIOCHEMISTRY AND		Semester 4
		BIOPHYSICS		
Hrs/Week 5				Credits 4

- Course Objective

 To know the structure of plant cell, cell organelles and biochemical molecules of life
- To understand the biophysical laws governing universe

Course Outcome

K1	CO1	To recollect the details about Plant cell, organelles, and their functions
K2	CO2	To revisit the structure and functions of biomolecules
K3	CO3	To understand the central dogma of molecular biology
K4	CO4	To understand the biophysical forces and laws of thermodynamics
K5	CO5	To know-how the quantification of biomolecules using selected optical
		techniques and to analyze the biomolecules using simple separation techniques

Unit	Content	Hrs
Unit I	Cell biology: *Ultra structure of Plant cell. Structure and	13
	functions of Plant cell organelles— mitosis. Water – structure,	
	properties and functions. Biomolecules : structure, classification and	
	functions of carbohydrates (*monosaccharides and	
	polysaccharides) Lipids- structure, properties, biosynthesis and	
	degradation.	
Unit II	Proteins: Structure and classification of aminoacids – primary-	13
	secondary- tertiary and quaternary structure - Ramachandran plot-	
	super secondary structures. Enzymes: Classification, nomenclature,	
	properties and functions – mechanism of enzyme action – activation	
	energy- Michelis- menton constant – Enzyme inhibitors.	
Unit III	Nucleic acids: Structure and function of nucleic acids (DNA and	13
	RNA) – Types of DNA and RNA – DNA supercoiling - DNA	
	replication - Transcription- Translation - Protein synthesis -	
	Reverse transcription.	
Unit IV	Biophysics: Chemical bonds (covalent, non-covalent and ionic)	13
	vander waal's forces - laws of thermodynamics - redox potential -	
	redox couple - energy states of atom - spin property of electrons -	
	Pauli's exclusion principle - absorption spectrum in molecules.	
Unit V	Bioinstrumentation: Principle, types and uses of pH meter—	13
	Colorimetry: principle and laws (Lambert's and Beer's) –	
	Colorimeter and Spectrophotometer . Centrifuge – chromatography	
	(paper, coloumn, thin layer, gas, ion-exchange and affinity) –	
1.G 1.C 1	electrophoresis (AGE & PAGE) – PCR.	

^{*}Self study topics

Text Books:

- 1. Verma P.S. and Agarwal, 2001. Cell biology. S. Chand & Company, New Delhi, India
- 2. Jain J.L., 1999. Fundamentals of Biochemistry, S. Chand & Company, New Delhi, India.
- 3. Subramanian P., 2005. Biophysics: Principles and techniques, MJP Publishers, Chennai.

Reference Books:

- 4. De Robertis E.D.P., and De Robertis, E.M.F., 1995. Cell and molecular biology, 8thedn. BI. Waverly Pvt. Ltd., New Delhi.
- 5. Alberts B., Bray, D.,Lewis, J. Raff, M. Roberts, K. and Watson, J.D.,1998. Molecular biology the cell. 2nd edn.., Garland Pub. Inc., New Delhi.
- 6. Conn E.E., Stumps, G., Brueming and Doi, R.G.,1987. Outlines of biochemistry, John Wiley &Co., Newyork.
- 7. Jayaraman J., 1988. Laboratory Manual in Biochemistry. Wiley Eastern Ltd., New Delhi.
- 8. Lee P.J. and Leegood, R.C., 1999. Plant biochemistry and molecular biology. John Wiley & Sons, Chichester, England.
- 9. Voet and Voet, 1995. Principles of biochemistry, WCB Publishers, London

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	S	Н	M	Н
CO2	M	S	M	L	Н
CO3	M	S	Н	Н	Н
CO4	M	Н	S	M	Н
CO5	M	M	Н	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi Dr. E. Neelamathi	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title	Bachelor of Scien	nce
Code			(BOTANY)	
Course code	20UBY406	Course Title		2020-2023
		MAJOR PRACTICAL – II (CYTOLOGY, ANATOMY & EMBRYOLOGY&BIOCHEMI BIOPHYSICS)	STRY AND	Semester 4
Hrs/Week 2				Credits 4

- To learn various anatomical features of higher plants
- To know the structure and development of anther, ovary, embryo

Course Outcome

K1	CO1	To recollect the internal structure and functions of angiospermic plants
K2	CO2	To understand the working principle of selected instruments
K3	CO3	To analyze the developmental details of plant embryo
K4	CO4	To prepare permanent micro sections
K5	CO5	To obtain working knowledge in basic biochemical techniques

Unit	Content	Hrs
Unit I	Cell biology: Charts of prokaryotic & eukaryotic cell and cell	6
	organelles, DNA, RNA models. Cell division - mitosis	
***	A 4 Di 4 11 di 4 Co 1	
Unit II	Anatomy : Plant parts, cell - tissue types - Stem: shoot apex, primary	6
	structure of dicot stem (<i>Tridax</i> and <i>Cucurbita</i>), monocot stem	
	(Sorghum) - normal secondary thickening in a dicot stem (Thespesia) - anomalous secondary thickening in Boerhaavia and	
	Dracaena stems. Leaf: stomatal types, dicot (Nerium) and monocot	
	(Grass). Root: root apex, primary structure of dicot root (<i>Dolichos</i>),	
	monocot root (<i>Canna</i>) - normal secondary thickening in and dicot	
	root (Castor). Anomalous secondary thickening in <i>Achyranthes</i> root.	
Unit III	Embryology: Flower: Permanent slides on structure of anther,	5
	ovule, embryosac and endosperm (coconut and areca endosperm) -	
	embryo dissection (<i>Tridax</i> and <i>Waltheria</i>), Pollinium dissection	
	(Calotropis).	
Unit IV	Biochemistry & Bioinstrumentation:	5
	Complementary colours	
	 Verification of Beer's law 	
	 Absorption spectrum & Chlorophyll estimation 	
	 Standard graph preparation 	
	 Estimation of carbohydrate using spectrophotometer 	
	Estimation of sugar using Benedicts reagent	
Unit V	• Leaf pigment separation using TLC and paper	5
	chromatography	
	 Separation of cell organelles using centrifuge 	
	• Estimation of pH in water samples using pH meter	
	 Preparation of buffers 	

• Working principle of centrifuge, pH meter, colorimeter, spectrophotometer, electrophoresis and PCR.

Preparation of microsections of selected plants, plant parts and discussing their anatomical details, Separation and Quantification of biomolecules using simple apparatus, Demonstrations

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	M	S	M	M
CO2	L	S	S	M	Н
CO3	M	Н	M	L	S
CO4	S	M	S	M	S
CO5	Н	M	S	M	S

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. K. Rajalakshmi	Dr. R. Kannan		Dr.R.Muthukumaran
Dr. E. Neelamathi			

Programme Code	B.Sc.,	Programme Title Bachelor of Science (BOTANY)		nce
Course code	20UBY4N3	Course Title		2020-2023
		SKILL BASED ELECTIVE (NON MAJOR) – REMOTE SENSING AND NATURAL RESOURCE MANAGEMENT		Semester 4
Hr/Week 1				Credits 4

- To study the basic principles of remote sensing techniques
- To understand the role of GIS, GPS in managing Natural resources

Course Outcome

	K1	CO1	To list down the natural resources and biosphere reserves
	K2	CO2	To understand the concept of Remote sensing
	K3	CO3	To apply remote sensing techniques in Resource management
ſ	K4	CO4	To update the recent trends in remote sensing techniques

Unit	Content	Hrs
Unit I	Natural resources - Terrestrial and aquatic (Forest and marine	3
	resources) – Biodiversity – Concept – Conservation strategies (in	
	situ and ex situ) – Biosphere reserves – National Parks and Wildlife	
	sanctuaries – IUCN species status.	
Unit II	Remote sensing – Concept, platforms for remote sensing, satellites,	3
	sensors and satellite data products – Interpretation of remotely	
	sensed data-Visual interpretation and digital analysis.	
Unit III	Remote sensing and vegetation studies – Forest mapping-Land	2
	cover classification and charge detection studies.	
Unit IV	Unit IV Remote sensing for marine resource management – Coastal	
	vegetation surveys – Marine pollution monitoring.	
Unit V	Recent trends in remote sensing techniques - Role of GIS	2
	(Geographical Information System) and GPS (Global Positioning	
	System), IRNSS – National and International Agencies and their	
	achievements.	

Power point presentations, Quiz,

Text Books:

- 1. Thomas Eugene Avery and GraydonLennis Berlin, 1992. Fundamentals of Remote sensing and Airphoto Interpretation.
- 2. Agrawal K. C., 1996. Biological diversity, Agro Botanical Publishers, New Delhi.

Reference Books:

3. Solbris, Van Embden and Van dordt., 1994. Biodiversity and global changes. CAB International, International Union of Biological Sciences, Wallingford.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	M	M	M	L
CO2	M	S	M	M	S
CO3	Н	S	M	L	S
CO4	M	M	M	M	S

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi	Dr. R. Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science		nce
Code			(BOTANY)	
Course code	20UBY4N4	Course Title		2020-2023
		SKILL BASED ELECTIVE		Semester 4
		(NON MAJOR) -BIOINFORMATICS		
Hr/Week 1				Credits 2

- To introduce classical bioinformatics theory to students
- To focus computer science techniques used in biological studies

Course Outcome

K1	CO1	To introduce Bioinformatics and Biological databases
K2	CO2	To comprehend the origin of life and genetic code
K3	CO3	To know-how the gene finding, protein prediction and genetic algorithm
K4	CO4	To analyze the phylogeny between species using pattern recognition and
		homology

Unit	Content	Hrs
Unit I	Life - origin and evolution – biomolecules – book of life - genetic	3
	code – genomics and proteomics – Human Genome Project.	
Unit II	Introduction to bioinformatics – biological databases and searching	3
	tools – virtual library – servers for bioinformatics – IT tools for	
	bioinformatics.	
Unit III	III Genetic algorithm – sequence analysis –similarity search- pairwise	
	and multiple sequence alignment – structure prediction.	
Unit IV	Gene finding – protein prediction – tools and databases for	
	biomolecular visualization – drug designing.	
Unit V	Phylogenetic analysis – tools and databases for phylogenetic tree	
	construction – homology – orthology – paralogy – analogy.	

Powerpoint presentations, Quiz

Text Books:

- 1. Lesk A.M.2002, Introduction to Bioinformatics, Oxford University Press, Oxford.
- 2. Parthasarathy S., 2008. Essentials of programming in C for life sciences. Ane Books India, New Delhi.
- 3. Sundararajan S. and R. Balaji, 2002. Introduction to Bioinformatics, Himalaya Publishing House Mumbai.

Reference Books:

- 4. Chakraborthy C., 2004. Bioinformatics Approaches and Application. Chawla offset printers Delhi.
- 5. Westhead D.R., J. Parish and R.M.Twyman, 2003. Bioinformatics (instant notes) Viva books pivate limited New Delhi.

6. KhanI.A.,and A. Khanum, 2002, Emerging trends in Bioinformatics, Ukaaz Publications.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	S	M	M	S
CO2	Н	S	L	M	S
CO3	M	S	M	M	S
CO4	M	S	L	M	S

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. R. Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science		
Code			(BOTANY)	
Course code	20UBY507	Course Title		2020-2023
		TAXONOMY OF ANGIOSPER	RMS	Semester 5
Hrs/Week 5				Credits 4

- To learn nomenclature systems and to identify the plants
- To introduce modern trends in taxonomy
- To know the economic uses of plants

Course Outcome

K1	CO1	To introduce and list down the technical terms used in taxonomy
K2	CO2	To understand the principle and classification of angiosperms
K3	CO3	To create interest in identifying flowering plants in and around the campus
K4	CO4	To get hands-on training in preparing herbarium
K5	CO5	To update the Botanical nomenclature, norms and digital taxonomy

Unit	Content	Hrs
Unit I	Introduction to plant taxonomy – principles - morphology and	13
	technical terms used in taxonomy (root, stem, leaf, inflorescence,	
	flowers and fruits) – Systems of classification – natural (Bentham &	
	Hooker) and artificial (Linnaeus) and APGA - merits and demerits.	
Unit II	Botanical nomenclature - ICBN (ICN) - typification - author citation - valid publication - herbarium techniques - floras - *Botanical survey of India (BSI) and its function. Modern trends in	13
	taxonomy - digital taxonomy - chemo taxonomy - online herbaria - *Royal botanical garden.	
Unit III	Detailed study of the range of characters and economic importance of the families: Polypetalae : Annonaceae, Capparidaceae, Rutaceae, Anacardiaceae, *Fabaceae, Cucurbitaceae and Apiaceae. Gamopetalae : Rubiaceae, Apocynaceae, Asteraceae.	13
Unit IV	Detailed study of the range of characters and economic importance of the families: Gamopetalae : *Asclepiadaceae, Scorphulariaceae, Acanthaceae, and *Lamiaceae. Monochlamydeae : Amaranthaceae, Euphorbiaceae.	13
Unit V	Monocots: *Orchidaceae, Cannaceae, *Liliaceae, Arecaceae, and Poaceae. *Pollination mechanisms to be included.	13

^{*}Self study topics

Field study, Identification of plants in the campus, Herbarium preparation

Text Books:

1. Chopra G.L., 2004 Angiosperm (Systematics and life cycles), Pradeep publications. Jalandhar.

- 2. PandeyB.P., 1997. Taxonomy of angiosperms. Chand and Co. Ltd. New Delhi.
- 3. PandeyB.P., 1980. Economic Botany, Chand and Co. Ltd. New Delhi.

Reference books:

- 4. SharmaO.P., 1993. Plant taxonomy, Tata McGraw-Hill Education,
- 5. VasishtaP.C., 1994. Taxonomy on angiosperms. S. Chand & Co., New Delhi
- 6. Gamble J.S.1967. Flora of Madras, Vol. I, II & III. Govt. of India.
- 7. Jeffrey C., 1976. An introduction to plant taxonomy. Allied publication.
- 8. Lawrence .G.H.M., 1964. An introduction to plant taxonomy, Central Book dept., Allahabad.
- 9. Porter C.L., 1969. Taxonomy of flowering plants. Eurassia Publication House, New Delhi
- 10. Rendle A.B., 1980. The classification of flowering plants (Vol. 1& 2), Vikas students Edn.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	Н	M	S
CO2	S	Н	M	Н	M
CO3	S	M	M	S	M
CO4	S	M	S	S	S
CO5	S	L	L	S	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. E. Neelamathi	Dr. R. Kannan		Dr.R.Muthukumaran

Programme Code	B.Sc.,	Programme Title Bachelor of Science (BOTANY)		nce
Course code	20UBY508	Course Title	(BOTILIVI)	2020-2023
		MICROBIOLOGY AND PLANT		Semester 5
		PATHOLOGY		
Hrs/Week 5				Credits 4

- To know the microbial biodiversity
- To learn the techniques in bacteriology and immunology
- To know plant diseases and its control

Course Outcome

K1	CO1	To appreciate the diversity of microbes
K2	CO2	To understand the basic defence mechanism and concept of Immunology
K3	CO3	To analyse the food and water samples for contamination
K4	CO4	To get hands-on training in culturing microbes
K5	CO5	To learn economically important plant disease

Unit	Content	Hrs
Unit I	History and Scope of Microbiology-Bacteriology: Bacteria - morphology and ultra structure – major features – nutritional types – bacterial respiration - growth and reproduction – *economic importance - culture media and pure culture techniques (spread plate, pour plate and streak plate).	15
Unit II	Virology: Virus — characteristics - ultra structure, shape, - transmission and reproduction (HIV, Rabies & T4 Phage).	15
Unit III	Immunology: - antigen, antibody and vaccines - antibiotics - microbes producing ethanol, antibiotics (penicillin and streptomycin) control of microorganisms - chemotherapy.	15
Unit IV	Food, soil and water microbiology: microbial flora of fresh food - food spoilage and poisoning (botulism) - *food preservation-microbial flora of milk - pasteurization and dairy products - cheese production- production of ethanol, vinegar and citric acid. Microbiology of soil and water - detection of coliforms - MPN and MFT.	15
Unit V	Plant pathology: Introduction - brief history - classification of plant diseases - Koch's postulate - symptoms, causal organism and control measures of bacterial (citrus canker), fungal (tikka disease of ground nut, paddy blast, and red rot of sugarcane) and viral (TMV) diseases – control of plant diseases- BCA.	15

^{*}Self study topics

Powerpoint presentation, Field observation of diseased plants, Quiz, Seminar, Assignment

Text Books:

- 1. Ananthanarayanan and Jayarampanikar, Textbook of microbiology, 2017 (10th Edn.)Universities press, Hyderabad.
- 2. Pelczar JR., M.J., R.D. Reid and E.C.S. Chan, 1983. Microbiology (4thed.) Tata McGraw Hill Publishing Company Pvt. Ltd., New Delhi.
- 3. Purohit, S.S., Microbiology Fundamentals & applications, 2006, Agro Bios (India)...
- 4. Sharma, .P.D., Plant Pathology, Deep and Deep Publications, New Delhi.

Reference Books:

- 1. Atlas R.M., 1996. Principles of Microbiology. Wm.C. Brown Publishers
- 2. Black, J.G., Microbiology –II Edition, Prentice Hall publications.
- 3. Churchill, Immunobiology- The Immune System in Health and Disease. Livingstone publication. New York.
- 4. Hans G. Schlegel, General Microbiology, 7thed, Cambridge Low Price Edns
- 5. Kenneth J. Ryan, C. George Ray, Sherris Medical Microbiology: An Introduction to Infectious Diseases.
- 6. Prescott, L.M., Harley JP and Klein DA., 1990. Microbiology. Wan C.Publishers.
- 7. Rose, A.H., Chemical Microbiology, 3rded, Butterworth World Student Reprints.
- 8. Salle.A.J., Fundamental Principles of Bacteriology, Tata McGraw Hill.
- 9. Stanier R., General Microbiology, 5thed, Macmilan Press ltd.

PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	Н	M	Н
CO2	M	S	M	M	M
CO3	M	Н	Н	L	M
CO4	M	M	Н	L	S
CO5	M	M	M	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. A. Logamadevi	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title	Bachelor of Science	
Code			(BOTANY)	
Course code	20UBY509	Course Title		2020-2023
		GENETICS & EVOLUTION		Semester 5
Hrs/Week 5				Credits 4

- To learn the principles and theories of inheritance
- To know the concepts of classical and modern genetics

Course Outcome

K1	CO1	To revise the Mendelian Genetics
K2	CO2	To understand the concept of gene and molecular basis of heredity
K3	CO3	To learn the significance of Meiosis
K4	CO4	To analyse the causes of mutation and DNA repair mechanisms

Unit	Content	Hrs
Unit I	Introduction to Genetics - Mendelian inheritance-*Mendel and his experiments with pea plant – Mendels'laws - law of dominance – incomplete dominance – law of segregation - law of independent assortment – Monohybrid cross - dihybrid cross - back and test crosses.	13
Unit II	Non-Mendelian inheritance -interaction of genes -complementary genes - supplementary genes - duplicate genes - inhibitory genes - polygenic inheritance - multiple alleles and blood groups in man.	13
Unit III	Meiosis - crossing over – chromosome maps – linkage – sex linkage – types of sex linkage – sex linked inheritance – cytoplasmic inheritance – chloroplast and mitochondrial inheritance - sex determination – chromosomal – genic balance – hormonal and environmental sex determination.	13
Unit IV	Chemical basis of heredity - DNA as genetic material (McCleod and Mc Carty experiments) - RNA as genetic material (Frankel-Conrat experiment) - concept of gene - genetic code - features and properties - prokaryotic (lac operon) and eukaryotic gene expression and regulation	13
Unit V	Mutations - causes of mutation - mutagenic agents - gene mutation - DNA repair mechanisms (photo reactivation, excision and recombinational) - chromosomal aberrations - ploidy - significance of polyploidy.Introduction to Evolution - *origin of life - theories of evolution - Lamarck, Darwin and Hugo De Vries - Wisemann theory.	13

^{*}Self study topics

Powerpoint presentation, Slides, Quiz, Seminar, Assignment

Text Books:

1. Sinnot, Dunn and Dobshansky, Principles of Genetics. McGraw Hill Pub.

- 2. Verma P. S. and V. K. Agrawal. 2004. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S. Chand & Company Ltd., New Delhi.
- 3. Chawala H. S. 2002. Introduction to Plant Biotechnology. Oxford & IBH Publishing Company, New Delhi.
- 4. Gifford, E. M. and Foster, A.S. 1989. Morphology and evolution of vascular plants. W.H. Freeman & Co., Newyork.

Reference Books:

- 5. Verma P. S. and V. K. Agrawal. 2006. Genetics. S. Chand & Company Ltd., New Delhi.
- 6. Goodenough V., 1992. Genetics, Saunders College publishing.
- 7. Kenny et al., Gene regulation and its expression. Plenum press.
- 8. Lawin, Molecular basis of gene expression. Wiley & Sons.
- 9. Lewin B. 2002. Genes VII. OxfordUniversity Press, Oxford.
- 10. Snustad D. P. and M. J. Simmons. 2000. Principles of Genetics. John Wiley & Sons, Inc.,
- 11. Strickberger M. W. 1990. Genetics (3rd Ed.). Macmillan Publishing Company. USA.
- 12. Watson J.D. et al., Molecular Biology of the gene. The Benjamin/Cummings.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	Н	M	M	L
CO2	M	S	L	M	S
CO3	Н	S	M	M	M
CO4	M	S	M	M	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. E. Neelamathi	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science		nce
Code			(BOTANY)	
Course code	20UBY510	Course Title		2020-2023
		BIOTECHNOLOGY & GENETIC ENGINEERING		Semester 5
Hrs/Week 5				Credits 4

- To acquire knowledge on plant tissue culture
- To learn the basic principles, tools and techniques in Genetic engineering

Course Outcome

K1	CO1	To understand the concept of totipotency, micropropagation and meristem culture
K2	CO2	To learn the principle of somatic embryogenesis, haploids, synthetic seeds
K3	CO3	To revisit the molecular tools and vectors in genetic engineering
K4	CO4	To understand the principle of gene transfer, blotting techniques and markers
K5	CO5	To update the knowledge on Transgenic plants, DNA finger printing and other
		applications

Unit	Content	Hrs
Unit I	Introduction to plant tissue culture – concept of totipotency and pluripotency – sterilization techniques – solid & liquid medium (MS medium, Whites medium) – Micropropagation – stages of micropropagation – applications. Callus and cell suspension culture – meristem culture.	13
Unit II	Somatic embryogenesis – principle and applications of somaclonal variation & cryopreservation. Haploid production – anther culture – pollen culture – embryo culture and rescue – protoplast isolation, fusion and culture– somatic hybridization – cybrids- *synthetic seeds.	13
Unit III	Scope and history of genetic engineering – molecular tools in genetic engineering: restriction endonucleases, ligases, phosphatases, methylases, and kinases. Host cells – vectors-nomenclature – properties of good vector – types of vectors – plasmid (T_i , PBR_{322} & $pUC18$), bacteriophage (λ phage) – artificial chromosome vectors (BAC & YAC) – transposable elements.	13
Unit IV	Gene transfer methods: Natural and Direct – <i>Agrobacterium</i> mediated gene transfer –. Construction of genomic and cDNA libraries –Selection and screening of rDNA – DNA hybridization – DNA probes – blotting techniques (southern, northern and western blots) – molecular markers (RAPD, RFLP and SNPs)- selectable markers – Reporter genes.	13
Unit V	*Applications: Transgenic plants – disease resistant (<i>Bt</i> cotton) – herbicide resistant (round up soya) – golden rice – <i>Flavr savr</i> tomato – Edible vaccines – Plantibodies – DNA Finger printing technique and its applications – DNA barcoding – Biochip- DNA vaccine – recombinant DNA safety guidelines – Intellectual Property Rights (IPR) and Bioethics.	13

Powerpoint presentation, Quiz, Seminar, Assignment, Case study on the DNA finger printing technique

Text Books:

- 1. Chawla H.S., 2000. Introduction to Plant Biotechnology, Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi.
- 2. RamawatK.G., 2001. Plant Biotechnology, S. Chand & Company Ltd, New Delhi.
- 3. Ignacimuthu S., 1996. Applied Plant Biotechnology, TataMcGraw Hill Publishing Company Ltd, New Delhi.
- 4. Satyanarayana U., 2005. Biotechnology. Books and Allied (P) Ltd., Kolkata.
- 5. Dubey R.C., 1995. A text book on Biotechnology (2nd Ed), S. Chand & Company Ltd., New Delhi.
- 6. Gupta P. K., 2001. Elements of Biotechnology, Rastogi Publications. Meerut.

Reference Books:

- 1. Street H.E., 1977. Plant tissue culture, Blackwell Scientific Publications, London.
- 2. Trigiano R.N. and Gray D.J., 1996. Plant tissue culture concepts and laboratory exercises. CRC Press, Newyork. Brown T.A., 1995. Gene Cloning- an introduction. Chapman and Hall Publication (3rd Ed).New York.
- 3. Desmond S.T. Nicholl, 2004. An Introduction to Genetic Engineering (2nd Ed). CambridgeUniversity Press.
- 4. Freifelder D., 1994.Molecular Biology, Narosa Pub. Inc., Boston, London.
- 5. Nicholl Desmond S.T., 2002. An Introduction to Genetic Engineering (Second Edition), CambridgeUniversity Press.
- 6. Primrose S.B. and Twyman R.M., 2008. Gene Manipulation. Blackwell Pub. USA.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	Н	M	M	Н
CO2	M	S	M	M	Н
CO3	L	S	M	S	S
CO4	M	S	M	L	S
CO5	M	M	Н	Н	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi	Dr.R.Kannan		Dr.R.Muthukumaran

Programme Code	B.Sc.,	Programme Title Bachelor of Science (BOTANY)		
Course code	20UBY511	Course Title ELECTIVE I - MATHEMATI BIOLOGISTS	CS FOR	2020-2023 Semester 5
Hrs/Week 5				Credits 5

- To acquire knowledge on basic arithmetic and biostatistical methods
- To introduce the application of computers in Biostatistics

Course Outcome

77.4	001	
K1	COL	To revise the basic arithmetic and number system
K2	CO2	To understand the role of mathematics in solving biological problems
K3	CO3	To introduce the statistical methods for analyzing a data
K4	CO4	To analyse and interpret a sample data using various methods
K5	CO5	To update the computer knowledge in presenting the data

Unit	Content	Hrs
Unit I	Maths in Biology – manipulating numbers – units and conversion – units of concentration – normality, molarity, molality and dilutions	13
	- areas and volumes – exponents and logs.	
Unit II	Matrices – types - addition – subtraction - multiplication – determinants – inverse matrix – solving a system of linear equations-	13
	Mathematical modelling in biology – Linear growth and decay models and Non linear growth and decay models.	
Unit III	Biostatistics – introduction - techniques: <i>Frequency distribution</i> - * collection , analysis and graphical representation of data - measures of central tendency: mean, median and mode - measures of	13
	dispersion: range, standard deviation, coefficient of variation and correlation.	
Unit IV	Theoretical distribution – binomial, poisson and normal distribution – Test of significance - Chi-square test – test for goodness of fit (2x2 contingency table, Yate's correction to be omitted) - Student 't' test – ANOVA (one way classification).	13
Unit V	Softwares for biostatistics – *MS Office - Word & Powerpoint: Excel: spreadsheet – formula bar - standard deviation – correlation – t- test – Chi square test – ANOVA (one way) – charts. Access: Creation and querying the database.	13

Note: Special instruction to question setters: In either or type of questions in sections B and C, one must be a problem and the other will be a question for descriptive answer.

Worksheets, Take home assigments, Seminar, Quiz

Text Books:

1. Alexis Leona and Mathews Leon, 1999. Introduction to computers. Leon Tech World, Chennai.

^{*}Self study topics

- **2.** Cann Alan J., 2003. Maths from scratch for Biologists. John Wiley & Sons Ltd., Chichester, England.
- 3. Gurumani, N., 2005. An introduction to Biostatistics. MJP Publishers, Chennai.
- 4. Kapur J.N., 1988. Mathematical Modeling. Wiley Eastern Limited, New Delhi.

Reference Books:

- **5.** ManicavachagomPillay, T.K., T. Natarajan and K.S. Ganapathy, 2006. Algebra Vol.II. S. Viswanathan (printers & publishers) Pvt Ltd., Chennai.
- 6. Prasad, S., 2001. Elements of Biostatistics. Rastogi publications, Meerut.
- **7.** Edward Batschlet, 1973. Introduction to mathematics for life sciences. Springer Verlag, New York.
- **8.** Pranab Kumar Banerjee, 2004. Introduction to Biostatistics. S. Chand & Company Ltd., New Delhi.
- **9.** Schwartz J.T.,1961. Introduction to matrices and vectors. McGraw Hill Book Company, INC., New York.
- **10.** Simons S., 1964. Vector analysis for mathematicians, scientists and engineers. Pergamon press, The Macmillan Company, New York.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	M	M	M	Н
CO2	Н	Н	M	M	Н
CO3	Н	M	L	M	S
CO4	L	M	M	M	S
CO5	M	M	L	Н	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. E.Neelamathi	Dr.R.Kannan		Dr.R.Muthukumaran

Programme Code	B.Sc.,	Programme Title Bachelor of Science (BOTANY)		
Course code	20UBY5S1	Course Title SKILL BASED ELECT NETWORK AND INFO SECURITY	,	2020-2023 Semester 5
Hr/Week 1				Credits 2

• To impart knowledge of network security, Wi-Fi security, hackers, secure networking and password managers.

Course Outcome

K1	CO1	To remember the basic concepts of network
K2	CO2	To understand the network hacking techniques
K3	CO3	To deploy information and network security
K4	CO4	To interpret the common threats today in computer network.

Unit	Content	Hrs
Unit I	Basics of network – network media – various operating sustems –	3
	basics of firewalls on all platforms including Windows, Mac OS and	
	Linux	
Unit II	Security vulnerabilities across an entire network – network hacking	3
	techniques and vulnerability scanning.	
Unit III	Configure and architechtect a small network for physical and	2
	wireless security- firewall configuration on windows and linux	
	platform. Network privacy issues.	
Unit IV	Network monitoring to discover and identify potential hackers and	2
	malware using tools like WIRESHARK and SYSLOG. Online	
	tracking by hackers.	
Unit V	Best methods of authentication including passwords, mutifactor	3
	authentication including soft tokens and hard tokens. Best password	
	managers to use – how passwords are cracked – how to mitigate the	
	password attacks	

Google classroom

Text Books:

Reference course materials will be available online through NGM open source learning platform.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	M	M	Н	S
CO2	Н	M	Н	Н	Н
CO3	M	Н	M	M	M
CO4	M	Н	Н	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. R. Kannan	Dr.R.Kannan		Dr. R. Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science		
Code			(BOTANY)	
Course code	20UBY5S2	Course Title		2020-2023
		SKILL BASED ELECTIVE (M CYBER SECURITY – ETHICA	,	Semester 5
Hr/Week 1				Credits 2

• To understand the basics of cyber security, ethical hacking and protection.

Course Outcome

K1	CO1	To remember the basic concepts of cyber security
K2	CO2	To understand the knowledge about ethical hacking
K3	CO3	To deploy the use of hacking tools
K4	CO4	To analyze the details about internet connection.

Unit	Content	Hrs
Unit I	To understand how websites work, how to discover and exploit web	3
	application vulnerabilities and to gain full control over websites.	
	Secure systems from all the unknown attacks. Secret tracking and	
	hacking infrastructure.	
Unit II	Ethical hacking in cyberspace – its fields and different types of	3
	hackers. Hack and secure both Wi-fi and wired networks.	
Unit III	Discover vulnerabilities and exploitation of hacking in cyber	2
	network servers. How secure systems are hacked using client-side	
	and social engineering attacks. Use of hacking tools such as	
	Metasploit, Aircrack-ng, SQLmap etc.	
Unit IV	Network basics and how devices interact inside a network- network	2
	penetration. Control connections of clients in network by password	
	cracking. Fake Wi-Fi network creation with internet connection and	
	spy on clients. To gather detailed information about clients and	
	networks like their OS, opened ports, etc.	
Unit V	Explore the threatlandscape - darknets, dark markets, zero day	3
	vulnerabilities, exploit kits, malware, phishing and much more.	
	Master defences against phishing, SMShing, vishing, identity theft,	
	scam, cons and other social engineering threats.	

Google classroom

Text Books:

Reference course materials will be available online through NGM open source learning platform.

СО	PSO	PSO1	PSO2	PSO3	PSO4	PSO5
	CO1	M	S	M	Н	S
	CO2	Н	M	Н	M	Н
	CO3	M	Н	M	M	M
(CO4	M	M	Н	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. R. Kannan	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title	Bachelor of Scien	Bachelor of Science	
Code			(BOTANY)		
Course code	20UBY612	Course Title		2020-2023	
		PLANT PHYSIOLOGY		Semester 6	
Hrs/Week 5				Credits 4	

- To know the cellular functions of plants
- To understand the physiological functions of plants

Course Outcome

K1	CO1	To know the Plant function and Plant movements
K2	CO2	To understand the concept of water potential, water transport
K3	CO3	To analyse the role of photosynthesis and respiration in plant function
K4	CO4	To enlist various plant growth regulators
K5	CO5	To know the stress physiology of plants and

Unit	Content	Hrs
Unit I	Water relations - water potential and its components - *osmosis - plasmolysis - imbibition - absorption of water - absorption of minerals - mineral nutrition.	13
Unit II	Transpiration - significance and factors - Stomatal types - mechanism of stomatal movements - theories of ascent of sap - translocation of solutes - Photosynthesis - light and dark reactions C_3 - C_4 pathways - photorespiration.	13
Unit III	Respiration - aerobic - glycolysis - Krebs' cycle - electron transport system (ETS) anaerobic fermentation - Nitrogen metabolism - nitrogen cycle - biological nitrogen fixation - Biosynthesis of aminoacids.	13
Unit IV	Plant growth and development - growth regulators - auxins, gibberellins, kinetins,*ethylene and ABA. Abscission – Senescence – PCD.	13
Unit V	Physiology of flowering - photoperiodism - vernalization - biological clocks -Water and salt stress - Plant movements - seed dormancy.	13

Powerpoint presentations, Simple Experiments, Demonstrations, Seminar, Quiz, Assignments

Text Books:

- 1. Verma 1984. Plant physiology. Allied publishers, New Delhi.
- 2. Jain V.K., 2008. Fundamentals of Plant Physiology. S. Chand & Company Ltd., Ram Nagar, New Delhi.

Reference Books:

3. Bidwell R.G.S., 1982. Plant physiology. Collier Mac Million International edn.

- 4. Devlin R.M., 1969. Plant Physiology. CBS Publishers & Distributors.
- 5. Salisbury Frank and L.W. Ross, 1986. Plant physiology. CBS Publishers
- 6. Srivastava, 1982. Plant physiology, CBS Publishers & Distributors.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	S	Н	L	M
CO2	M	S	Н	M	L
CO3	M	S	Н	M	Н
CO4	M	Н	M	M	L
CO5	M	Н	L	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr. R. Kannan		Dr.R.Muthukumaran

Programme Code	B.Sc.,	Programme Title	Bachelor of Scient (BOTANY)	nce
Course code	20UBY613	Course Title		2020-2023
		ECONOMIC AND ETHNOBO	TANY	Semester 6
Hrs/Week 5				Credits 4

- To acquire knowledge on useful medicinal plants, cultivation methods
- To know the secondary metabolites and therapeutic potentials of plants

Course Outcome

K1	CO1	To revise the traditional system of medicine
K2	CO2	To understand the phytochemistry and medicinal principles of selected plants
K3	CO3	To analyse the distribution, cultivation, extraction and uses of economically
		important plants
K4	CO4	To prepare herbal formulations
K5	CO5	To create awareness in conserving medicinal plants

Unit	Content	Hrs
Unit I	Economic botany: Importance of plants and plant products- Origin,	13
	botanical description, cultivation methods and uses of food plants:	
	Cereals- (rice, wheat), Pulses- (bengal gram, pea), Vegetables-	
	(potato, tomato)	
Unit II	Distribution, method of cultivation, extraction, industrial processing	13
	and uses of fibre yielding plants- (Cotton, Jute), Oil yielding plants-	
	(Coconut, Groundnut) -), Spices- (coriander, ginger), Beverages-	
	(tea, coffee), General account and sources of timber and biofuels.	
Unit III	Ethnobotany: Scope- outline of traditional system of medicine:	13
	Ayurveda- Unani- Siddha and Homeopathy. Pharmacognosy,	
	Ethnic groups of India. *Nutraceuticals and bioactive compounds:	
	biological role and applications of alkaloids and glycosides.	
	Medicinal uses of bacteria (Actinomycetes), Algae (Spirulina),	
	Fungi (Penicillium), Pteridophytes (Lycopodium) and	
	Gymnosperms (Ginkgo).	
Unit IV	Distinguishing features, phytochemistry and medicinal properties of	13
	the following plants. Whole plant (Phyllanthus amarus), Roots	
	(Rauwolfia serpentina), Rhizome (Curcuma longa), Leaves	
	(Ocimum sanctum), Flower (Hibiscus rosasinensis), Fruits (Emblica	
	officinalis) and Seeds (Myristica fragrans).	
Unit V	Herbal formulations -Plant crude drugs-adulteration- types, methods	13
	of collection, processing and storage practices- evaluation of crude	
	drug- *conservation of medicinal plants.	

^{*}Self study topics

Powerpoint presentation, Demonstration

Text Books:

- 1. Wallis T.E., 1985. Text book of Pharmacognosy, 5th edition, CBE publishers and distributors, New Delhi.
- 2. Ali M., 1997. Text book of Pharmacognosy, CBS publishers and distributors, New Delhi.
- 3. Kumar N.C., (1993). An Introduction to Medical botany and Pharmacognosy. EmkayPublications, New Delhi.

Reference Books:

- 4. Gokhale S.B., Kokate C.K., Purohit A.P. 1982. NiraliPrakasham Publisher, Pune.
- 5. Kirtikar and Basu, 1980. Indian medicinal plants Vol. IV, Panni press, Allahabad.
- 6. Harborne J.B., 1998. Phytochemical methods A guide to modern technique of plant analysis, 3rd edn., Chapman & Hall, UK.
- 7. Wijeskera R.O.B., 1991. The medicinal plant industry, CRC press, Boston, London.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	S	Н	M	M
CO2	L	S	Н	Н	L
CO3	M	S	Н	L	M
CO4	L	Н	M	M	L
CO5	M	Н	L	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. A. Logamadevi	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science		
Code			(BOTANY)	
Course code	20UBY614	Course Title		2020-2023
		HORTICULTURE AND PLAN	T BREEDING	Semester 6
Hr/Week 5				Credits 4

- To study the basic principles of horticulture
- To learn the techniques of plant propagation
- To know the methods and practices in plant breeding

Course Outcome

K1	CO1	To know the methods of vegetative propagation
K2	CO2	To understand the principle behind plant propagation
K3	CO3	To propagate plants using simple horticultural techniques
K4	CO4	To develop interest in flower arrangement, fruit preservation and vegetables

Unit	Content	Hrs	
Unit I	Scope – divisions of horticulture – methods of vegetative	13	
	propagation – cutting – layering – grafting – manures – fertilizers –		
	irrigation.		
Unit II	Gardening – types of garden – indoor garden – kitchen garden –	13	
	public garden – important ornamentals – habits and types – garden		
	components – lawn – glass house – rockery – water garden - topiary.		
Unit III	Production technology – growth regulators in horticulture – plant	13	
	protection measures for horticultural crops - cultivation of		
	vegetables (Brinjal) - fruits (Banana) - flowers (Jasmine) -		
	plantation crops (Tea) – medicinal plants (Sarpagandha).		
Unit IV	Unit IV Commercial horticulture – extraction of jasmine concrete – papain		
	– bonsai – flower arrangement – cut flowers – preservation of fruits		
	and vegetables.		
Unit V	Plant breeding – objectives – plant selection – plant introduction –	13	
	hybridization – hybrid vigour – achievements in crop breeding –		
	sugarcane and paddy.		

Charts, Powerpoint presentation, Demonstration

Text Books:

- 1. Mani BhusanRao, 1964. Text book of Horticulture. Macmillan India Ltd., Newdelhi.
- 2. Sharon Pastor et al., 2010. Basics of Horticulture, Oxford Book Company, Jaipur.
- 3. Singh P., 1996. Plant Breeding. Kalyani publishers, NewDelhi.

Reference Books:

- 4. Kumar N., 1993. An introduction to horticulture, TNAU, Coimbatore.
- 5. George Acquaah, 2004. Horticulture principles and practices. Prentice Hall of India Pvt Ltd., New Delhi.
- 6. Edmond, 1988. Fundamentals of Horticulture. MCGH Publications New Delhi.
- 7. Shukla R.S. and P.S. Chandal, 1998. Cytogenetics Evolution and Plant Breeding. Chand & Company Ltd. NewDelhi.
- 8. Satya P. 2012. Plant Breeding. Books and allied Pvt Ltd. Kolkatta.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	L	M	S	M
CO2	M	Н	Н	M	M
CO3	M	Н	S	M	M
CO4	Н	M	S	S	S

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science		ıce
Code			(BOTANY)	
Course code	20UBY615	Course Title		2020-2023
		ELECTIVE – II – BIOINFORM	IATICS	Semester 6
Hrs/Week 5				Credits 5

- To introduce classical bioinformatics theory to students
- To focus computer science techniques used in biological studies

Course Outcome

K1	CO1	To introduce the biological databases and computer languages
K2	CO2	To understand the sequence analysis techniques
K3	CO3	To analyse the structure of proteins with the help of computers
K4	CO4	To comprehend genomics and proteomics
K5	CO5	To know the role of computers in drug discovery

Unit	Content	Hrs		
Unit I	Introduction to computers - components of computers - input	13		
	devices – output devices - storage devices - operating system -			
	DOS/WINDOWS/LINUX - computer languages - machine			
	language – assembly language - high level languages - translators –			
	compilers.			
Unit II	Computer languages for bioinformatics - HTML – structure – tags –	13		
	formatting – hyperlink – graphics; C language – history – features			
	of C – structure of C program – character set – key words – data			
	types – constants, variables – statements – functions.			
Unit III	Introduction to internet - data communication concept - LAN /			
	WAN / WWW - e-mail & FTP - Bioinformatics - definition -			
	biological database (generalized & specialized) - nucleic acid			
	database - protein database - genome database - bibliographic			
	resources and literature database - bioinformatics servers.			
Unit IV	Searching techniques – ENTREZ - sequence analysis tools -	13		
	sequence alignment - pairwise alignment (BLAST) - multiple			
	sequence alignment (CLUSTAL X) - phylogenetic analysis – tree			
	building and tree analysis.			
Unit V	Protein prediction - primary structure prediction - secondary	13		
	structure prediction – bio molecular visualization (RASMOL) –			
	drug discovery - target and lead discovery - Computer Aided Drug			
	designing (CAD).			

^{*}Self study topics

Powerpoint presentation, Seminar, Assignment

Text Books:

- 1. Lesk A.M., 2002, Introduction to Bioinformatics, Oxford University Press,Oxford.
- 2. Parthasarathy S., 2008. Essentials of programming in C for life sciences. Ane Books India, New Delhi.

3. Sundararajan S. and R. Balaji, 2002 Introduction to Bioinformatics, Himalaya Publishing House – Mumbai.

Reference Books:

- 4. Chakraborthy C., 2004, Bioinformatics Approaches and Application. Chawla offset printers Delhi.
- 5. Westhead D.R., J. Parish and R.M.Twyman, 2003. Bioinformatics (instant notes) Viva books pivate limited New Delhi.
- 6. KhanI.A. and A. Khanum, 2002, Emerging trends in Bioinformatics, Ukaaz Publications.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	Н	M	M	Н
CO2	Н	Н	M	M	Н
CO3	Н	Н	M	Н	Н
CO4	M	Н	Н	Н	Н
CO5	L	M	Н	L	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. E. Neelamathi	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science		
Code			(BOTANY)	
Course code	20UBY616	Course Title		2020-2023
		ELECTIVE – III – HABITAT I	ECOLOGY	Semester 6
Hrs/Week 5				Credits 5

- To know the uniqueness of the varying habitats in the biosphere
- To acquire the knowledge about the structure and functions of different ecosystems
- To learn the techniques for environmental assessment and ecological dynamics.

Course Outcome

K1	CO1	To appreciate the various habitats and their vegetation
K2	CO2	To understand the concept of habitats and succession
K3	CO3	To analyse the components of different ecosystems
K4	CO4	To know-how the methods of Environmental audits and Environmental Impact
		Assessment
K5	CO5	To inventor and manage the natural resources using Remote sensing techniques.

Unit	Content	Hrs
Unit I	Introduction to habitat ecology: historical, ecological &	13
	evolutionary perspectives - habitat concepts (edge, ecotones,	
	interspersion and juxtaposition) - units of vegetation $-*$ succession.	
Unit II	Ecology of major habitats: forest (tropical rain forest, deciduous and	13
	coniferous) – scrub jungle and deserts (hot, dry and cold deserts) –	
	grasslands (temperate and tropical).	
Unit III	Ecology of major habitats: aquatic (fresh water - lentic & lotic) -	13
	marine (coasts, estuaries, phytoplankton and phytobenthos,	
	mangroves and coral reefs.) – tundra (arctic and alpine).	
Unit IV	Physical and anthropogenic factors influencing habitats - habitat	13
	degradation and fragmentation - Environmental Impact Assessment	
	(EIA) - environmental audits - *Environmental Legislations and	
	Regulations.	
Unit V	Inventory of unique habitats and their distribution - Remote Sensing	13
	(RS) - Geographical Information System (GIS) -Indian Regional	
	Navigation Satellite System (IRNSS)- principles and applications of	
	remote sensing techniques - cover classification and mapping - use	
	and values of GIS approaches to habitat ecology.	

^{*}Self study topics

Field study, Inventory of Campus vegetation, Powerpoint presentations, Seminar, Assignment

Text Books:

- 1. Odum E.P.(ed), 1971. Fundamentals of Ecology, W.B. Saunders Company, Philadelphia.
- 2. Sharma P.D., 1997. Ecology and Environment, Rastogi Publications, Meerut.

- 3. Dash M.C., 1993. Fundamentals of Ecology, Tata McGraw Hill, New Delhi.
- 4. Agarwal K.C., 1989. Environmental Biology, Agro Botanical Publishers (India), Delhi.
- 5. Ananthakrishnan T.N., 1987.Bioresources Ecology, Oxford and IBH, New Delhi.
- 6. Kormondy E.J., 1999. Concepts of Ecology, Prentice Hall, New Delhi.

Reference Books:

- 7. Leonard Ortolano, 1997. Environmental Regulation and impact Assessment. John Wiley & Sons, Inc.
- 8. Cadogan A. and G. Best, 1992. Environment and Ecology, Nelson Blackie, Glasgow.
- 9. Lenihan J. and W.W. Fletcher, 1977. Environment and Man, Vol IV. The Chemical Environment, Blackie, London.
- 10. Pandian T.J., 2000. Biodiversity: Status and Endeavours of India, UNESCO sponsored international workshop on Biodiversity, Ghent University, Belgium, pp. 3-6
- 11. Subrahmanyam N.S., and Sambamurthy, A.V.S., 2001. Ecology, Narosa Publishing House, New Delhi.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	M	Н	Н
CO2	M	Н	M	L	M
CO3	Н	Н	S	M	M
CO4	M	M	Н	L	S
CO5	S	Н	S	S	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.R.Kannan	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title Bachelor of Science		nce
Code			(BOTANY)	
Course code	20UBY617	Course Title		2020-2023
		MAJOR PRACTICAL - III (for papers)	· V sem theory	Semester 6
Hrs/Week 2				Credits 4

- To learn the plant systematics and herbarium techniques
- To study the physiological processes in the plant system
- To acquire practical knowledge on plant tissue culture and genetic engineering

Course Outcome

K1	CO1	To appreciate the diversity of flowering plants and their identification in their
		natural habit
K2	CO2	To get hands-on training in culturing bacteria
K3	CO3	To identify economically important plant diseases
K4	CO4	To solve biological problems using mathematics
K5	CO5	To create interest in learning the applications of Genetic Engineering
K6	CO6	To obtain working knowledge in creating a word document, powerpoint, excel

Unit	Content	Hrs
Unit I	Taxonomy of Angiosperms	6
	Detailed study, description of floral parts of the plant families included	
	in theory paper. Field trip, collection of plants and submission of	
	herbarium 20 sheets.	
	Genetics and Evolution:	
	Solving problems on Mendelian inheritance and interaction of genes;	
	charts and diagrams from genetics and evolution.	
Unit II	Microbiology:	5
	Demonstrations:	
	1. Microscopy	
	2. Culture media preparation	
	3. Pure culture techniques (streak, pour and spread plate)	
	4. Antibiotic assay	
	Individual experiments	
	1. Smear preparation	
	2. Simple staining	
	3. Differential staining	
	4. Hanging drop experiment	
	<i>Charts</i> : Ultra structure of bacterium, HIV, rabies, T ₄ phage, antigen	
	and antibody and food and industrial microbiology related charts.	
	Plant pathology	
	Specimens/charts/ of diseases:	
	1. Citrus canker	
	2. Red rot of sugar cane	
	3. Tikka disease of ground nut	
	4. Paddy blast	
	5. TMV	

Unit III	Biotechnology & Genetic Engineering:	
	Charts/spotters on Genetic Engineering and biotechnology	5
	Demonstration	
	1. Media for plant tissue culture	
	2. Callus induction	
	3. Regeneration of plantlet	
	4. Synthetic seeds	
	Mathematics for Biologists: Simple problems on	
	1. Manipulating numbers	
	2. Units and conversion	
	3. Molarities and dilutions	
	4. Areas and volumes	
	5. Exponents and logs	
	6. Matrices and determinants.	
Unit IV	Bio- Statistics:	5
	1. Collection, analysis and graphical representation of data	
	2. Measures of central tendency - mean, median and mode	
	3. Measures of dispersion: range, standard deviation,	
	coefficient of variation correlation	
	4. Test of significance - Chi-square test and Student't' test.	
Unit V	Application of software in Biostatistics:	5
	1. Simple exercises in MS- Word	
	2. Presentation in MS-Powerpoint	
	3. Statistical calculations and chart preparation in MS-Excel	
	4. Creation of database in MS-Access.	

Identification of plants, Demonstrations, culture techniques

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	M	Н	Н	Н
CO2	M	M	Н	M	Н
CO3	Н	M	Н	M	M
CO4	Н	M	Н	L	S
CO5	M	M	M	M	S
CO6	Н	M	Н	L	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan		Dr.R.Muthukumaran
Dr. E.Neelamathi			

Programme	B.Sc.,	Programme Title Bachelor of Science		ıce
Code			(BOTANY)	
Course code	20UBY618	Course Title		2020-2023
		MAJOR PRACTICAL - IV (for	VI sem theory	Semester 6
		papers)	-	
Hrs/Week 2				Credits 4

- Course Objective
 To acquire basic knowledge in mathematics & biostatistics
- To create programs for bioinformatics
- To understand bioinformatics tools

Course Outcome

K1	CO1	To compare the physiological functions of plants under different environmental
		conditions
K2	CO2	To know the economically important plants and their produces
K3	CO3	To create interest in rearing plants in vitro
K4	CO4	To learn the bioinformatics tools to analyse the protein structure
K5	CO5	To study the vegetation using Quadrat and line transect method

Unit	Content	Hrs
Unit I	Plant physiology	6
	Individual experiments:	
	 Estimation of water potential (DPD) by liquid immersion method and plasmolytic method. Estimation of osmotic pressure by plasmolysis. Determination of respiration by respiroscope Determination of stomatal frequency and index. 	
	5. Determination of rate of transpiration - Cobalt chloride, Ganongs potometer.	
	6. Determination of rate of photosynthesis under different Co ₂ concentrations & different light intensities using wilmots bubbler	
Unit II	Plant physiology demonstration experiments:	5
	Light screen experiment	
	2. Amylase activity	
	3. Soil nitrification	
	4. Determination of respiratory quotient	
	5. Essentiality of mineral elements on plant growth –	
	Hydroponics	
	Economic & Ethnobotany	
	 Economic importance of fibre yielding plants, oil yielding plants, pulses, cereals, spices and condiments. Charts and specimens of ethnobotanical significance. 	
Unit III	Horticulture and Plant Breeding	5
	Charts and specimens	
	Demonstration on propagation techniques	

	Demonstration on fruit/vegetable preservation	
Unit IV	Bioinformatics	5
	1. Programming using HTML	
	2. Designing and editing of web page	
	3. Writing programs using C.	
	4. Searching and retrieval of biological database.	
	5. Bibliographic searching using ENTREZ	
	6. Sequence alignment	
	7. Gene finding	
	8. Protein prediction	
	9. Molecular visualization	
Unit V	Habitat Ecology	5
	1. Vegetation study by Quadrat and Line transect method	
	2. Estimation of plant biomass	
	3. Determination of dissolved oxygen	
	4. Estimation of CO ₂ in selected water samples	
	5. Determination of Total Dissolved Solids	
	6. Spotters and charts on Habitat ecology.	

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	M	Н	M	M
CO2	M	M	M	Н	M
CO3	M	M	Н	M	M
CO4	M	M	M	S	Н
CO5	S	Н	S	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. R. Kannan	Dr. R. Kannan		Dr.R.Muthukumaran
Dr. M. Latha Isabel			

Programme Code	B.Sc.,	Programme Title Bachelor of Science (BOTANY)		nce
Course code	20UBY6S3	Course Title SKILL BASED ELECTIVE (M FOREST BOTANY	(AJOR) –	2020-2023 Semester 6
Hr/Week 1				Credits 2

• To impart theoretical and practical knowledge in all the areas of forestry

Course Outcome

K1	CO1	To know the history and types of forests
K2	CO2	To understand the principle behind forest laws
K3	CO3	To propagate plants and conserve soil and forests
K4	CO4	To develop interest in marketing of forest products

Unit	Content	Hrs
Unit I	History of forest development; Forest types of India, Dendrology,	3
	Afforestation, Deforestation and Social forestry.	
Unit II	Fundamentals of Wild Life, Forest Pathology, Forest Ecology,	3
	Biodiversity & Conservation	
Unit III	Forests Soils: Classification, factors affecting soil formation;	2
	physical, chemical and biological properties. Soil conservation.	
	Role of forests in conserving soils.	
Unit IV	Non-Timber Forest Products (NTFPs)\ - Principles and	2
	establishment of herbaria and arboreta. Conservation of forest	
	ecosystems. Clonal parks. Marketing and Trade of Forest Produce	
Unit V	Forest laws, necessity; general principles, Indian Forest Act 1927;	3
	Forest Conservation Act, 1980; Wildlife Protection Act 1972.	
	Endangered plants, Endemism and Red Data Books.	

Charts, Powerpoint presentation, Demonstration

Text Books:

- 1. S. Prabhu K. Manikandan , Indian Forestry A Breakthrough Approach to Forest Service 7th Edition , Jain Brothers publications, Rajasthan, India.
- 2. K. P. Sagreiya, Sharad Singh Negi, Forests and Forestry, National Book Trust, India
- 3. Sharad Singh Negi · Forest Policy and Law, International Book Distributors, Dehradun-India
- 4. Ajay.S, Rawath, Indian forestry, A perspective, Indus publishing company, New Delhi

Reference Books:

- 1. K.T. Parthiban, N. Krishnakumar, M. Karthick introduction to Forestry & Agro forestry, Scientific publishers, Jodhpur, India
- 2. Richard P. Tucker -A Forest History of India, SAGE publications, New Delhi, India

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	L	M	S	M
CO2	M	Н	Н	M	M
CO3	M	Н	S	M	M
CO4	Н	M	S	S	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. A. Logamadevi	Dr.R.Kannan		Dr.R.Muthukumaran

Programme	B.Sc.,	Programme Title	le Bachelor of Science	
Code			(BOTANY)	
Course code	20UBY6S4	Course Title		2020-2023
		SKILL BASED ELECTIVE (MAJOR) –		Semester 6
		MUSHROOM CULTIVATION		
Hr/Week 1				Credits 2

To acquire knowledge on the mushroom culture

Course Outcome

K1	CO1	To identify edible mushrooms from poisonous ones
K2	CO2	To understand the mushroom cultivation
K3	CO3	To know-how the mushroom culture techniques
K4	CO4	To create interest in preparing mushroom recipes

Unit	Content	Hrs
Unit I	Introduction to mushroom cultivation: General characters, structure	2
	and reproduction of mushrooms - Identification of mushrooms-	
	types of mushroom- Poisonous mushroom.	
Unit II	Uses of mushroom: Nutritive and food value, Medicinal value	2
Unit III	Mushroom culture techniques: Mushroom shed construction- spawn preparation - medium preparation -spawn running - incubation. Cultivation methods for Button & Oyster mushrooms - disease and control measures.	3
Unit IV	Post harvest operations: Harvesting – storage and preservation – spoilage of mushrooms - packing – marketing.	3
Unit V	Mushroom recipes: Mushroom soup, sandwich, gravy, omelette, mushroom chilly, manchurian and briyani.	2

Powerpoint presentation, Demonstration,

Text Books:

- 1. Nita bahl, 1988. Hand book of mushrooms, Vol. II, IBH publishers.
- 2. Kanniyan, 1980. Text book of Mushroom, Today and Tomorrow publishers, Chennai.

Reference Books:

- 3. Pathak V.N., Yadav N. andGour M., 2000. Mushroom production and processing technology, Agrobios (India) Ltd.
- 4. Chang S.T. and N.A.Hayer, 2002. The biology and cultivation of edible mushrooms.
- 5. Reeti Singh and U.C. Singh, 2005. Modern Mushroom cultivation, Agrobios (India) Ltd.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	M	S	M
CO2	M	Н	L	S	M
CO3	M	Н	S	S	M
CO4	M	Н	S	S	M

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. E. Neelamathi	Dr.R.Kannan		Dr.R.Muthukumaran

OFFERING VALUE ADDED COURSES ON

1.ORGANIC FARMING

2.MUSHROOM CULTIVATION

Programme Code	B.Sc.,	Programme Title	gramme Title Bachelor of Science (BOTANY)	
Course code		Course Title		2020-2023
		VALUE ADDED COURSE (MA ORGANIC FARMING	AJOR) –	Semester 6
Hr/Week 1				Credits 1

To learn the concept and simple techniques in organic farming

Course Outcome

K1	CO1	To know-how make a compost using pit method
K2	CO2	To learn the preparation of manures, panchakavya
K3	CO3	To know- plant protection management
K4	CO4	To learn the procedure in organic crops certification

Unit	Content	Hrs
Unit I	Biofarming – organic farming – introduction – concept – conventional Vs organic farming	3
Unit II	Organic manuring – farmyard manure – green manure – panchakavya - fish tonic – horn manure – composting – vermicomposting.	3
Unit III	Water and weed management practices – mulching – dry mulching, green mulching, live mulching – stone mulching.	2
Unit IV	Integrated plant protection management – biofence – companion plants – herbal pest repellants- neem formulations – bacterial and fungal biopesticides.	2
Unit V	Organic crops certification – requirements – procedure – validity – labeling- organic crops marketing.	2

Field visits, Demonstration, Success story - Discussion

Text books:

- 1. Pawar R.K., 2009. Organic farming for Sustainable Horticulture. Oxford Book Company, India.
- 2. Arun K. Sharma, 2004. Biofertilizers for Sustainable Agriculture. Agrobios India Ltd, Jodhpur.

Reference Books:

3. Arun K. Sharma, 2004. A Handbook of Organic farming. Agrobios India Ltd, Jodhpur.

4. Dahama A.K., 2009. Organic farming for Sustainable Agriculture. Agrobios India Ltd, Jodhpur

CO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	M	Н	M
CO2	Н	Н	Н	M	Н
CO3	Н	Н	M	Н	Н
CO4	Н	M	Н	Н	Н

H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi	Dr. R.Kannan		Dr. R. Muthukumaran

Programme Code	B.Sc.,	Programme Title	Bachelor of So (BOTANY)	Bachelor of Science (BOTANY)	
Course code		Course Title		2020-2023	
		VALUE ADDED COUR MUSHROOM CULTIVA	` ,	Semester 6	
Hr/Week 1				Credits 1	

To acquire knowledge on the mushroom culture

Course Outcome

K1	CO1	To identify edible mushrooms from poisonous ones
K2	CO2	To understand the mushroom cultivation
K3	CO3	To learn the mushroom marketing techniques
K4	CO4	To create interest in preparing mushroom recipes

Unit	Content	Hrs
Unit I	Mushroom cultivation – History – Scope and Importance. Cultivated	2
	species - poisonous species - nutritive and medicinal value of	
	mushrooms.	
Unit II	Mushroom culture techniques - Methods of mushroom cultivation –	2
	Tray method - bag method - Mushroom shed construction -	
	Requisites for mushroom cultivation	
Unit III	Spawn preparation - medium preparation - spawn running -	3
	incubation. Cultivation methods for Button & Oyster mushrooms -	
	disease and control measures.	
Unit IV	Post harvest operations- harvesting – storage and preservation –	3
	spoilage of mushrooms - packing – marketing.	
Unit V	Mushroom recipes: Mushroom soup, sandwich, gravy, omelette,	2
	mushroom chilly, manchurian and briyani.	

Field visits, Demonstration, Success story - Discussion

Text Books:

- 1. Nita bahl, 1988. Hand book of mushrooms, Vol. II, IBH publishers.
- 2. Kanniyan, 1980. Text book of Mushroom, Today and Tomorrow publishers, Chennai.

Reference Books:

- 3. Pathak V.N., Yadav N. andGour M., 2000. Mushroom production and processing technology, Agrobios (India) Ltd.
- 4. Chang S.T. and N.A.Hayer, 2002. The biology and cultivation of edible mushrooms.
- 5. Reeti Singh and U.C. Singh, 2005. Modern Mushroom cultivation, Agrobios (India) Ltd.

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	M	S	M
CO2	M	Н	L	S	M
CO3	M	Н	S	S	M
CO4	M	Н	S	S	M

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. E. Neelamathi	Dr.R.Kannan		Dr.R.Muthukumaran