DEPARTMENT OF BOTANY

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE (AUTONOMOUS)

POLLACHI - 642 001

SYLLABUS

CBCS & OUTCOME BASED EDUCATION

For the students admitted during 2018 - 2021

B.Sc., BOTANY

&

ALLIED ZOOLOGY

REVISED ON THE BOARD OF STUDIES

HELD ON FEBRUARY 2018

NGM COLLEGE

Vision

Our dream is to make the college an institution of excellence at the national level by imparting quality education of global standards to make students academically superior, socially committed, ethically strong, spiritually evolved and culturally rich citizens to contribute to the holistic development of the self and society

Mission

Training students to become role models in academic arena by strengthening infrastructure, upgrading curriculum, developing faculty, augmenting extension services and imparting quality education through an enlightened management and committed faculty who ensure knowledge transfer, instill research aptitude and infuse ethical and cultural values to transform students into disciplined citizens in order to improve quality of life.

DEPARTMENT OF BOTANY

Vision

The Department of Botany aims to achieve high quality education and research relevant to local, regional and national needs and through knowledge sharing with leading researchers and educators across the country. We foster an exciting and intellectually stimulating atmosphere for all in a co-operative and positive environment.

Mission

To bring confidence in the lifestyle of any Botany student whose stay will ensure proficiency and competency in the subjects thought. We inculcate the habit of excellence in all the learning activities so as to ensure employability.

PROGRAMME OBJECTIVES

- 1. To impart quality education to meet the demands of higher education and Research in Botany
- 2. To develop a competitive edge among the students to meet out their employability

PROGRAMME SPECIFIC OUTCOMES

- PSO1 To appreciate and understand the diversity of cellular forms, lower plants to higher plants
- PSO2 To introduce the theoretical knowledge and basic concepts on Biomolecules, Microbes, Plant Structure, Function and Evolution
- PSO3 To get hands-on training and practical knowledge in the preparation of microsections, herbarium, quantifying biomolecules and other basic techniques
- PSO4 To create interest in identification of plants using Floral characters, genetic traits and Molecular markers
- PSO5 To update the students with modern trends in Plant biology and introduce the interdisciplinary approach

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE, POLLACHI.

DEPARTMENT OF BOTANY B.Sc., BOTANY SCHEME OF EXAMINATION (I -VI SEMESTER) (FOR CANDIDATES ADMITTED FROM THE ACADEMIC YEAR 2018-2021 BATCH)

(CBCS for under graduate programmes with language for 4 semesters)

			ek	of	N	/Iax. Ma	rks	nt				
Part No	Course Course title		Lecture+ Tutorial/ Practical Hours/ week	Duration of Exam Hrs	Internal	End-of- Semester	Total	Credit Point				
		Semes	ter I									
Ι	18UTL101	Tamil/Hindi Paper – I	6	3	25	75	100	3				
II	18UEN101	English Paper – I	5	3	25	75	100	3				
III	18UBY101	Major Paper I - Plant Diversity I (Phycology, Mycology and Bryology)	9	3	25	75	100	4				
	18UZY1A1	Allied - Paper I Zoology	7	3	25	75	100	3				
IV	18UHR101	R101 Human Rights		2	-	50	50	2				
	18HEC101	101 Human Excellence - Personal values & SKY yoga practice- I		2	25	25	50	1				
V		Extension Activities (NSS, NCC, Sports & Games)										
							500	16				
		Semest	ter II									
Ι	18UTL202	Tamil/ Hindi Paper – II	6	3	25	75	100	3				
II	18UEN202	English Paper – II	5	3	25	75	100	3				
III	18UBY202	Major Paper II Plant Diversity II (Pteridophytes Gymnosperms and Palaeobotany)	6	3	25	75	100	4				
	18UBY203			3	40	60	100	4				
	18UZY2A2	Allied - Paper II Zoology	, 7	3	25	75	100	3				
	18UZY2A3	Allied - Paper III Practical	2	3	40	60	100	4				
IV	18EVS201	Environmental Studies	2	2	-	50	50	2				
	18HEC202	Human Excellence - Family values & SKY yoga practice- II	2	2	25	25	50	1				
V		Extension Activities (NSS, NCC, Sports & Games)					Extension Activities (NSS,					

							700	24
		Semes	ster III		•	I		
Ι	18UTL303	Tamil/ Hindi Paper – III	5	3	25	75	100	3
II	18UEN303	English Paper – III	6	3	25	75	100	3
III	18UBY304	Major Paper IV- Anatomy and Embryology	9	3	25	75	100	4
	18UCY3A4	Allied Paper IV - Chemistry			25	75	100	3
IV	18UBY3N1/ 18UBY3N2	Skill based subjects (Non major electives)- Landscape designing/ Herbal cosmetics *Basic Tamil paper I	1	2	-	50	50 50 2	
	18HEC303	18HEC303 Human Excellence - Professional values & 2 2 SKY yoga practice- III 2		25	25	50	1	
V	Extension Activities (NSS, NCC, Sports & Games)							
							500	16
		Sen	nester IV					
Ι	18UTL404	Tamil/ Hindi Paper – IV	5	3	25	75	100	3
II	18UEN404	BUEN404 English Paper – IV 6		3	25	75	100	3
III	18UBY405	Major Paper V – Cytology, Biochemistry and Biophysics	6	3	25	75	100	4
	18UBY406	Major Practical II - Paper VI (Anatomy & Embryology, Cytology, Biochemistry and Biophysics)	2	3	40	60	100	4
	18UCY3A5	Allied - Paper V- Chemistry	6	3	25	75	100	3
	18UCY3A6	Allied paper VI – Chemistry Practical	2	3	40	60	100	4
IV	18UBY4N3/ 18UBY4N4	Skill based subjects (Non major electives)- (Remote sensing and natural resource management/ Bioinformatics) *Basic Tamil paper II	1	2	-	50	50	2
	18HEC404	Human Excellence – Social values & SKY yoga practice- IV	2	2	25	25	50	1
V	18UNC401/ 18UNS402/ 18USG403	NCC/ NSS / Sports and Games		1	50		50	1
							750	25

			Semester 7	V				
TIT		Major Paper – VII -	Semester					
III	18UBY507	Taxonomy of Angiosperms	6	3	25	75	100	4
	18UBY508 Major Paper VIII - Genetics and evolution		5	3	25	75	100	4
	18UBY509	Major Paper IX – Microbiology and plant pathology	5	3	25	75	100	4
	18UBY510	Major Paper X – Genetic Engineering	5	3	25	75	100	4
	18UBY511	Elective -I Mathematics for Biologists	5	3	25	75	100	5
IV	18UBY5S1/ 18UBY5S2	Skill based subjects (Major electives)- Microscopic techniques/ Mushroom cultivation	1	2	-	50	50	2
	18GKL501	General Knowledge & General Awareness (SBE)	SS	2	-	50	50	2
	18HEC505	Human Excellence - National values & SKY yoga practice- V	2	2	25	25	50	1
		, , , , , , , , , , , , , , , , , , ,				1	650	26
		Sei	mester VI					_ ,
		T						
ш	18UBY612	Major Paper XII – Plant Physiology	6	3	25	75	100	4
	18UBY613	Major Paper XIII – Economic & Ethnic Botany	5	3	25	75	100	4
	18UBY614	Major Paper XIV - Plant Biotechnology	5	3	25	75	100	4
	18UBY615	Elective II – Bioinformatics&Cyber security	5	3	25	75	100	5
	18UBY616	Elective – III – Habitat Ecology	5	3	25	75	100	5
	18UBY617	Major Practical III – Paper XV (for V Sem theory papers)	2	3	40	60	100	4
	18UBY618	Major Practical IV (for VI Sem theory papers)	2	3	40	60	100	4
IV	18UBY6S3 18UBY6S4	Skill based subjects (Major electives)- Horticulture & Plant breeeing/ Biofarming	1	2	-	50	50	2
	18HEC606	Human Excellence - Global values & SKY yoga practice- VI	2		25	25	50	1
							800	33
		**Grand total					000	55
							3900	140

- * The credits given are applicable only to the students who opt for Basic Tamil paper and the credits for Human Excellence papers cannot be given to them.
- **Grand total should be equal/below 3900 (For UG Programmes); 2550 (For PG Programmes) SS – Self study, SBE – Skill Based Elective, NME–Non Major Elecive

Bloom's Taxonomy Based Assessment Plan PART I, II& III

		Internal : 25			External : 75
Bloom's Taxonomy Section	Knowledge Level	Section	Mark	Description	Total
K	K1	1-5 Section-A	5x1	MCQ(One question from each unit)	5
	K1	6-10 Section-A	5x1	Short answers (One question from each unit)	5
U	K2	11-15 Section-B	5x5	Short answers Either/ Or type (One question from each unit)	25
A	K3	16-21 Section-C	4x10	Detailed Four out of six (Question no.16 is compulsory) 17-21 Answer any three	40
				Total	75

Bloom's Taxonomy Section	Knowledge level	Section	Pattern	External	: 50
				Marks	Total
К	K1	Part A	1-5 Multiple choice with 4 options	5x1	5
U	K2		6-10 Short answers (One question from each unit)	5x1	5
А	K3	Part B	Open choice (5 out of 8 Questions)	5x8	40
				Total :	50

- Communicative English and General Awareness papers include 60% objective type of questions and 40% descriptive type of questions
- GK 100% objective type of questions (online exam)
- The marks and credits for Extension activities are given by the corresponding Departments

SYLLABUS

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BO	TANY)
Course code	18UBY101	Course Title PLANT DIVERSIT MYCOLOGY ANI	TY I (PHYCOLOGY, D BRYOLOGY)	2018-2021 Semester 1
Hrs/Week: 5				Credits 4

Course Objective

To understand the morphology, structure, life cycle of the selected forms of Algae, • Fungi, Lichens and Bryophyte.

To appreciate the diversity of lower plants •

	Course Outcome					
K1	CO1	To differentiate lower plants like Algae, Fungi, Lichens and Bryophytes				
K2	CO2	To understand the morphology and lifecycle of Algae, Fungi, Lichens, Bryophyte				
K3	CO3	To apply different classification systems to appreciate the diversity of lower				
		plants				
K4	CO4	To identify the economically important Algae, Fungi, Lichens and Bryophytes				

Unit	Content	Hrs
Unit I	General characters of algae - Classification of algae (Fritsch) – Distribution, structure, reproduction and life cycle of the following: Cyanophyceae (<i>Oscillatoria</i>), Chlorophyceae (<i>Oedogonium, Chara</i>) and Phaeophyceae (<i>Sargassum</i>).	13
Unit II	Distribution, structure, reproduction and life cycle of the following: Rhodophyceae (<i>Polysiphonia</i>) and Bacillariophyceae (<i>Cyclotella & Pinnularia</i>) - * Economic importance of algae .	13
Unit III	General characters of Fungi - Mode of nutrition - Classification of Fungi (Alexopoulos, 1972) - *Economic Importance of Fungi - Structure, reproduction and life cycle of Zygomycetes- <i>Mucor</i> , Ascomycetes – <i>Penicillium</i> , Yeasts	13
Unit IV	Structure, reproduction and life cycle of Basidiomycetes - <i>Puccinia</i> . Lichens: Occurrence, Morphology, structure, Reproduction and Economic importance.	13
Unit V	General characters and classification of Bryophytes (Reimers), Distribution, structure, development and reproduction of <i>Riccia</i> , <i>Anthoceros</i> and <i>Polytrichum</i> .	13

*Self study topics

Power point Presentations, Seminar, Quiz, Assignment,

Text Books:

- 1. Smith, G.M., 1971. Cryptogamic Botany Vol. I Algae & Fungi. Tata McGraw Hill Publishing Co., New Delhi.
- 2. Smith, G.M., 1971. Cryptogamic Botany Vol. II Bryophytes & Pteridophytes. Tata McGraw Hill Publishing Co., New Delhi.
- 3. Sharma O.P. 1992. Text book of Thallophytes. McGraw Hill Publishing Co., New Delhi.

Reference Books:

- 4. Sharma P. D. 1991. The Fungi, Rastogi& Co., Meerut
- 5. Hirendra Chandra Gangulee, Kumuel Shankar Das Chittatosh Datta, 1968. 3rdEdn. College Botany Vol. I & II, New central book agency, Calcutta.
- 6. Dube H. C. 1990. An introduction to Fungi. Vikas Publishing House Pvt. Ltd., Delhi.

CO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	Н	М	Н	Н
CO2	Н	Н	М	Н	Н
CO3	Н	Н	М	Н	L
CO4	Н	Н	М	Н	L

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. A. Logamadevi	Dr.R.Kannan	Dr.M.Durairaju	

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code		Course Title	2018-2021
18UZY1A1		ANCILLARY BOTANY PAPER - I (PLANT	Semester 1
		DIVERSITY, ANATOMY, EMBRYOLOGY AND	
		PLANT PATHOLOGY)	
Hrs/Week 6			Credits 3

- To appreciate the diversity in lower plants
- To understand the anatomy of angiosperms
- To know the embryo development and fertilization in higher plants
- To teach important plant diseases, causal organisms and control.

Course Outcome

K1	CO1	To recollect the existing diversity among lower plants
K2	CO2	To understand the internal structure and embryology of angiosperms
K3	CO3	To analyze the economically important plant diseases and their control measures
K4	CO4	To obtain the skill of technically draw the plant tissues

Unit	Content	Hrs
Unit I	Structure, life history and *economic importance of the following types: Algae: <i>Chlorella</i> , Diatoms and <i>Polysiphonia</i> , Fungi: <i>Penicillium</i> and <i>Agaricus</i> , Lichens.	16
Unit II	A brief account of the structure, reproduction and life cycle of the following genera (excluding development of sex organs): Bryophyte: <i>Riccia</i> , Pteridophyte: <i>Lycopodium</i> and Gymnosperm: <i>Cycas</i> .	16
Unit III	Simple tissues – parenchyma, collenchyma and sclerenchyma - complex tissues – xylem and phloem - cambium – primary structure and secondary structure of dicot stem.	15
Unit IV	Anther structure – ovule structure – 8-nucleate embryo sac – double fertilization – endosperm (nuclear and cellular) – structure of dicot and monocot embryos (development excluded) – polyembryony - parthenocarpy.	15
Unit V	Study of plant diseases - viral disease (TMV) - bacterial disease (citrus canker) - fungal disease (red rot of sugarcane) - *Plant disease control – physical, chemical and biological methods.	15

*Self study topics

Power point Presentations, Seminar, Quiz, Assignment,

Text Books:

CO1

CO2

CO3

- 1. Hirendra Chandra Gangulee, Kumuel Shankar Das Chittatosh Datta, 1968. 3rdEdn. College Botany Vol. I & II, New central book agency, Calcutta.
- 2. Susil Kumar Mukerjee, 1984. College botany, Vol.III. New Central Book agency, Calcutta.
- 3. Jain, V.K., 1974. Fundamentals of plant physiology, 6thEdn., S. Chand & Company Ltld., New Delhi.

Reference Books:

- 4. George, H.M., Lawrence, 1958. Taxonomy of vascular plants. The Macmillan Company, Newyork.
- 5. Pandey, B.P. 1997. Economic botany, C. Chand & Company Ltd., New Delhi.
- 6. Salisbury, F.B. and Rose, 1986. Plant physiology, 3rdEdn, C.B.S. Publishers, New Delhi.
- 7. Kumar, N., Abdul Khader, JBM., M.D. Rangaswami, P. and I.Irullappan, 1993. Introduction to species, Plantations crops, Medicinal and aromatic plants, Rajalakshmi publication, Nagercoil, Tamilnadu, India.
- 8. Wallils, T.E., 1985. Text book of pharmacognosy, 5thEdn. CBS publishers & distributors, Delhi.
- 9. Kumaresan, V., 1998. Biotechnology. Tata McGraw Hill Publishing Company Ltd., New Delhi.

Company	y Ltd., New De	1111.			
PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5

Η

Η

Μ

Η

Η

Η

Η

Η

L

Μ

Μ

Μ

S

S

S

S

10. Ignacimuthu,	S.,1996.	Applied	Biotechnology.	Tata	McGraw	Hill	Publishing
Company Ltd.	., New Delh	i.					

CO4	Н	S
S-Strong; H-Hig	gh; M-Medium;	L-Low

Η

Η

Η

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr. R. Kannan	Dr. M. Durairaju	

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code	18UBY101	Course Title	2018-2021
		PLANT DIVERSITY II (PTERIDOPHYTES, CVMNOS DREMS AND DAL A FOROTANW)	Semester 2
		GYMNOSPREMS AND PALAEOBOTANY)	
Hrs/Week 5			Credits 4

- To study the morphology, life cycle and economic value of selected Pteridophytes, Gymnosperms
- To learn the concept of evolution and paleobotany

Course Outcome

K1	CO1	To appreciate the morphology and lifecycle of Algae, Fungi, Lichens, Bryophyte
K2	CO2	To understand the concepts of evolution, Paleobotany and evolution of land
		plants
K3	CO3	To identify the economically important Pteridophytes and Gymnosperms
K4	CO4	To analyse the fossil slides and specimen

Unit	Content	Hrs
Unit I	General characters and classification of Pteridophytes (Reimers) - stelar evolution - heterospory and origin of seed habit - structure and reproduction of <i>Gleichenia</i> and Lycopsida(<i>Lycopodium</i>)	13
Unit II	Structure and reproduction of Sphenopsida (<i>Equisetum</i>) and Pteropsida (<i>Marsilea</i>).*Economic importance of Pteridophytes.	13
Unit III	General characters and classification of Gymnosperms (Sporne, 1965) - structure development and reproduction of <i>Cycas</i> .	13
Unit IV	Structure development and reproduction of <i>Gnetum</i> – affinities of <i>Gnetum</i> with Angiosperms *Economic importance of Gymnosperms .	13
Unit V	Palaeobotany - Geological time scale – fossils - fossilisation - kinds of fossils - detailed study of <i>Rhynia</i> , <i>Lepidodendron</i> , <i>Lepidocarpon</i> , <i>Lepidostrobus</i> and <i>Williamsonia</i> .	13

*Self study topics

Power point Presentations, Seminar, Quiz, Assignment,

Text Books:

- 1. Smith, G.M., 1971. Cryptogamic Botany Vol. II Bryophytes & Pteridophytes. Tata McGraw Hill Publishing Co., New Delhi.
- 2. Hirendra Chandra Gangulee, Kumuel Shankar Das Chittatosh Datta, 1968. 3rdEdn. College Botany Vol. II, New central book agency, Calcutta.
- 3. Sporne K.R. 1991. The morphology of Gymnosperms. B.I. Publications Pvt. Bombay Calcutta, Delhi.

Reference Books:

- 4. Sharma O.P. 1992. Text book of Pteridophyta, Macmillan India Ltd., New Delhi.
- 5. Wilson, N.S. and Rothwell, G.W. 1993. Palaeobotany and the evolution of plants (2nd edition), Cambridge University Press, UK.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	М	М	Н
CO2	S	Н	М	М	L
CO3	S	Н	Н	М	Н
CO4	S	S	L	М	L

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.M.Latha Isabel	Dr.R.Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY203	Course Title	2018-2021
		MAJOR PRACTICAL - I (PLANT DIVERSITY I & II)	Semester 2
Hrs/Week 2			Credits 4

- To get hands on knowledge on microbial culture techniques
- To understand the plant diversity, thallus construction of selected forms
- To learn about the fossilized plant forms and Plant evolution.

Course Outcome

K1	CO1	To revise the morphology and reproductive structures in Algae, Fungi, Lichens,
		and Bryophyte
K2	CO2	To get the picture of internal structures and spore bearing parts of selected plant
		forms
K3	CO3	To compare the life cycles of Algae, Fungi, Lichens, Bryophytes, Pteridophytes
		and Gymnosperms
K4	CO4	To prepare micro sections and to professionally draw plant sketches, to identify
		fossil specimen and slides

Unit	Content	Hrs
Unit I	A detailed study of thallus organization and reproductive structures of the following forms: Algae – Oscillatoria, Oedogonium, Chara, Sargassum, Polysiphonia, Cyclotella and Pinnularia. Fungi - Mucor, Penicillium, Yeasts and Puccinia. Lichen –Usnea.	5
Unit II	A detailed study of morphology, anatomy and structure of vegetative & spore bearing parts of the following genera: Bryophytes - <i>Riccia, Anthoceros</i> and <i>Polytrichum</i> .	5
Unit III	A detailed study of morphology, anatomy and structure of vegetative & spore bearing parts of the following genera: Pteridophytes - <i>Lycopodium</i> , <i>Gleichenia</i> and <i>Marsilea</i> .	5
Unit IV	A detailed study of morphology, anatomy and structure of vegetative & spore bearing parts of the following genera: Gymnosperms - <i>Cycas</i> and <i>Gnetum</i> .	6
Unit V	A detailed study of the following fossil genera <i>Rhynia, Lepidodendron, Lepidocarpon, Lepidostrobus</i> and <i>Williamsonia</i> from fossil specimen/parts or slides.	6

Preparing micro sections and mounting, Spotters, Specimen, Slides.

CO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	S	Н	L
CO2	S	М	S	Н	Н
CO3	S	М	S	Н	L
CO4	S	М	S	Н	М

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan	Dr.M.Durairaju	
Dr.K.Rajalakshmi			

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UZY2A2	Course Title	2018-2021
		ANCILLARY BOTANY PAPER - II (TAXONOMY OF ANGIOSPERMS, PHYSIOLOGY, HORTICULTURE, MEDICINAL BOTANY & PLANT BIOTECHNOLOGY)	Semester 2
Hrs/Week 6			Credits 3

- To appreciate the diversity in flowering plants
- To understand the physiology of angiosperms
- To learn the available horticultural techniques to raise new plantlets
- To study the selected medicinal plants and popular drugs from them
- To understand the basics of plant biotechnology

Course Outcome

K1	CO1	To appreciate the morphology and lifecycle of selected Angiosperms
K2	CO2	To understand the concepts of Plant functions, Plant propagation, Plant tissue
		culture
K3	CO3	To identify flowering plants and medicinal plants in their habit.
K4	CO4	To know-how different cutting, layering, grafting, budding methods to propagate
		different plants

Unit	Content	Hrs
Unit I	Plant Morphology (Terms only) - Vegetative and floral characters and Economic importance of the following families: Annonaceae, Rutaceae, Rubiaceae, Acanthaceae, Amarantaceae, Euphorbiaceae and Liliaceae.	16
Unit II	Photosynthesis – A brief account of light and dark reactions with reference to C3 plants – respiration – glycolysis, krebs cycle, oxidative phosphorylation – growth regulators – auxins, gibberellic acid and ABA.	16
Unit III	Horticulture: Seed propagation- asexual propagation and its advantages – cutting, layering, grafting and budding – *hydroponics – bonsai.	15
Unit IV	Pharmacognosy – definition and history – drugs obtained from algae (<i>Spirulina</i>), fungi (<i>Penicillium</i>), gymnosperms (<i>Ginkgo</i>) and angiosperms (<i>Rauwolfia serpentina</i> and <i>Phyllanthus amarus</i>) – nutraceuticals.	15
Unit V	Plant Biotechnology – plant tissue culture: totipotency – micropropagation – meristem culture – Transgenesis – Genetically modified food (Bt cotton and *Golden rice).	15

*Self study topics

Power point Presentations, Seminar, Quiz, Assignment

Text Books:

- 1. Hirendra Chandra Gangulee, Kumuel Shankar Das Chittatosh Datta, 1968. 3rdEdn. College Botany Vol. I & II, New central book agency, Calcutta.
- 2. Pandey B.P, 1986, Text Book of Botany (College Botany) Vol I and II, S.Chand and co. New Delhi.
- 3. Narayanaswamy, R.V & Rao, K.N .1976. Outlines of Botany, S. Viswanthan. Printers & Publishers, Madras.
- 4. Bhojwani, S.S. and Bhatnagar, S.P., 2009. The embryology of angiosperms, Vikas publishing house pvt Ltd., New Delhi.
- 5. Pandey, B.P., 1987. Plant anatomy, 4thEdn., S. Chand & Company, New Delhi.

Reference Books:

- 6. Gilbert, M. Smith, 1972. Cryptogamic botany: Algae and Fungi, Vol I. 2ndEdn. Tata McGraw Hill Publishing Ltd., New Delhi.
- 7. Krishnamoorthy, K.V. and K.N. Rao, 1984. Angiosperms, Viswanathanprinterspvt Ltd., Chennai.
- 8. Hirendra Chandra Gangulee and Ashok Kumar Kar, 1970. College Botany Vol II. New Central Book Agency, Calcutta.
- 9. Katherine Esau, 1953. Plant anatomy, 2ndEdn, Wiley Eastern pvt. Ltd., New Delhi.
- 10. Vashishta, P.C., 1997. Botany for degree students Pteridophytes Part IV, S. Chand & Company Ltd., New Delhi.
- 11. Reinert J. and Bajaj, Y.P.S., 1988. Applied and Fundamental aspects of Plant cell and tissue organ culture, Narosa Publishing house, New Delhi.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	Н	S	L
CO2	М	S	М	М	М
CO3	S	Н	М	S	М
CO4	L	М	Н	М	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan	Dr.M.Durairaju	
Dr.K.Rajalakshmi			

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UZY2A3	Course Title	2018-2021
		ANCILLARY BOTANY PRACTICAL	Semester 2
Hrs/Week 2			Credits 4

- To know the diversity, morphology, anatomy and reproductive structures of selected lower plants and higher plants.
- To impart the basic plant breeding, horticultural techniques and plant diseases.
- To introduce important medicinal plants and principles of plant biotechnology

Course Outcome

K1	CO1	To recollect some selected lower plants and higher plants in their habit
K2	CO2	To understand the internal structure, embryology and physiology of angiosperms
K3	CO3	To analyze the economically important plant diseases and their control measures
K4	CO4	To prepare microsections and obtain the skill of technically draw the plant tissues
K5	CO5	To propagate plants using simple horticultural techniques

Unit	Content	Hrs
Unit I	Plant Biodiversity Algae- <i>Chlorella</i> , Diatoms and <i>Polysiphonia</i> , Fungi- <i>Penicillum</i> and <i>Agaricus</i> , Lichens - <i>Usnea</i> , Bryophyte - <i>Riccia</i> , Pteridophyte - <i>Lycopodium</i> and Gymnosperm - <i>Cycas</i> , Symptoms and causal organisms and control measures of TMV, citrus canker and red rot of sugarcane.	6
Unit II	Plant Anatomy and Embryology Parenchyma, collenchyma, sclerenchyma, xylem and phloem. Primary structure of dicot stem (<i>Tridax</i>), secondary structure of dicot stems (<i>Tridax</i> and <i>Polyalthia</i>). Permanent slides - structure of anther, ovule, embryo sac and embryo.	6
Unit III	Taxonomy of Angiosperms Morphology – Diagrams - A detailed study of the following families: Annonaceae, Rutaceae, Rubiaceae, Acanthaceae, Amarantaceae, Euphorbiaceae and Liliaceae.	5
Unit IV	 Plant Physiology (Demonstration) Photosynthesis - test tube and funnel experiment and light screen experiment. Respiration – Ganong's respiroscope (aerobic) and Kuhn's fermentation (anaerobic). Horticulture: Charts on cutting, layering and grafting. 	5
Unit V	Medicinal Botany & Plant Biotechnology Study of following medicinal plants: Spirulina, Penicillium, Ginkgo, Rauwolfia serpentina and Phyllanthus amarus. Plant biotechnology charts.	5

Slides, Demonstrations, Simple experiments using apparatus, Power point Presentations,

CO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	М	М	S	М
CO2	S	L	Н	S	М
CO3	S	М	S	Н	М
CO4	S	L	S	Н	Н
CO5	М	М	Н	Н	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan	Dr.M.Durairaju	
Dr. K. Rajalakshmi			

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code	18UBY304	Course Title	2018 - 2021
		ANATOMY AND EMBRYOLOGY	Semester 3
Hrs/Week 5			Credits 4

- To acquire knowledge about the entire plant growth and development.
- To know various anatomical features of flowering plants
- To understand the important events in embryo development and fertilization.

Course Outcome

K1	CO1	To revisit the theories on Plant cell, tissues and cell division
K2	CO2	To understand the anatomy of various plant parts
K3	CO3	To analyze the internal structure and embryology of angiosperms
K4	CO4	To compare the growth and developmental pattern of dicots and monocots

Unit	Content	Hrs
Unit I	Anatomy: Plant body – cell types and tissues – meristems - Apical	13
	meristem – Shoot and root – theories – Cambium and its functions	
	- permanent tissues - simple and complex – Vascular bundles and	
	its types – differentiation – dedifferentiation – redifferentiation.	
Unit II	Primary structure of stem and root (monocot and dicot) – normal	13
	secondary growth in dicot stem and dicot root - anomalous	
	secondary growth in dicot stem (Boerhaavia) and monocot stem	
	(Dracaena) - dicot root (Achyranthes) - wood structure (sap wood	
	& heartwood).	
Unit III	Leaf – epidermal tissues – trichomes – stomatal types – internal	13
	structure of monocot (Grass) and dicot (Tridax) leaves. Anatomy	
	of hydrophytic leaf (Hydrilla) and xerophytic leaf (Casuarina).	
	Structural modifications in stems, root and leaves.	
Unit IV	Embryology: Flower – Anther structure - microsporangium -	13
	microsporogensis – structure & development of male gametophyte	
	- ovule - types -megasporangium - megasporogenesis (Polygonum	
	type) – structure and development of female gametophyte – types	
	of embryo sac.	
Unit V	Pollination – double fertilization and triple fusion – endosperm –	13
	types – embryo – structure and development - dicot (<i>Capsella</i>) and	
	monocot (Najas) - polyembryony - formation of seed - fruit -	
	parthenocarpy.	

*Self study topics

Charts, Powerpoint presentation, Seminar, Quiz, Assignment

Text Books:

- 1. Bhojwani S.S. and Bhatnagar, S.P., 2000. The embryology of angiosperms. 4th edition, Vikas printing houses, New Delhi.
- 2. Esau K. 1977. Anatomy of seed plants. 2nd edition. John Wiley & Sons, New York.
- 3. Vashista P.C., 1997. Plant Anatomy, S. Chand & Co., New Delhi.

Reference Books:

- 4. Fahn A., 1974. Plant Anatomy, 2nd edition. Pergamon Press, Oxford.
- 5. Pandey B.P., 1985. Plant Anatomy, S and Chand & Co., New Delhi.
- 6. Maheswari P., 1971. An introduction to embryology of angiosperms. Tata McGraw Hill Publishing Co., New Delhi.
- 7. Swamy B.G.L. and Krishnamurthy, K.V., 1980. From flower to fruit: Embryology of Angiosperms, Tata McGraw Hill Publishing Co., New Delhi.

CO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	М	М
CO2	Н	S	Н	М	L
CO3	М	Н	М	Н	М
CO4	Н	Н	Н	М	L

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan	Dr.M.Durairaju	
Dr. A. Logamadevi			

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science (BOTANY)
<u> </u>			· · · · · · · · · · · · · · · · · · ·
Course code	18UBY3N1	Course Title	2018-2021
		SKILL BASED ELECTIVE (NON MAJOR):	Semester 3
		LANDSCAPE	
		DESIGNING	
Hrs/Week 1			Credits 2

- To introduce the scope and essential elements of landscape.
- To learn various garden structures.

Course Outcome

K1	CO1	To revisit the Gardening types and features
K2	CO2	To understand the Landscape designing principles
K3	CO3	To analyze the uniqueness of indoor garden
K4	CO4	To create interest in making flower arrangements, kitchen garden and terrarium

Unit	Content	Hrs
Unit I	Landscape designing - principles and categories of landscaping -	3
	Important ornamental plants – habit and types.	
Unit II	Gardening – indoor garden: hanging baskets and terrarium – layout	3
	and importance of Terrace garden – public garden and its	
	components.	
Unit III	Garden features -Lawn: layout – preparation of land – propagation	2
	– irrigation – weeding – pruning.	
Unit IV	Glass house: applications and advantages - rockery –Hydroponics	2
	– topiary - bonsai.	
Unit V	Flower arrangement - cut flowers- Role of botanical garden-ex	2
	situ, in situ conservation.	

Text Books:

- 1. Kumar N., 1993. An introduction to horticulture, TNAU, Coimbatore.
- 2. Mani BhusanRao, 1964. Text book of Horticulture. Macmillan India Ltd., Newdelhi.
- 3. Pratibhatrivedi, 1996. Home Gardening. Indial Council of Agricultural Research, New Delhi.

Reference Books:

- 4. George Acquaah, 2004. Horticulture principles and practices. Prentice Hall of India Pvt Ltd., New Delhi.
- 5. Edmond, 1988. Fundamentals of Horticulture. MCGH Publications New Delhi.
- 6. Satya P. 2012. Plant Breeding. Books and allied Pvt Ltd. Kolkatta.

Powerpoint presentation, Discussion, Demonstration

<u></u>					
PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S
CO2	Н	Н	Н	Н	Н
CO3	Н	Н	Н	М	Н
CO4	S	Н	S	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY3N2	Course Title	2018-2021
		SKILL BASED ELECTIVE (NON MAJOR): HERBAL COSMETICS	Semester 3
Hr/Week 1			Credits 2

• To understand the role of herbs as a source of natural and safe cosmetics.

K1	CO1	To recollect the medicinal herbs and the need for herbal cosmetics
K2	CO2	To comprehend the principles behind herbal cosmetics
K3	CO3	To analyze the various personal care remedies using herbs
K4	CO4	To expose the students to prepare home recipes with available herbs

Unit	Content	Hrs
Unit I	Herbal cosmetics – introduction – principles – definition – history	3
	– need – advantages- disadvantages.	
Unit II	Herbal skin and hair care – face glow - dark circle remover-tools –	3
	ingredients – recipes	
Unit III	SPA – origin and history –ayurvedic spa – aromatherapy – special	2
	spa treatments.	
Unit IV	Manicure and pedicure – history – definition – techniques –	2
	benefits.	
Unit V	Herbal home recipes - herbal shampoo - soap - hair colorant -	2
	tooth powder.	

Text Books:

- 1. Babu, S.S., 2000. Herbal cosmetics Pushkal publishers, Mumbai.
- 2. Asharam,2002.Herbal Indian perfumes and cosmetics, Sri Satguru publications, New Delhi, India

Powerpoint presentation and Demonstration

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	Н	Н	Н	Н
CO2	Н	S	Н	L	Н
CO3	Н	Н	Н	L	Н
CO4	S	Н	S	S	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. A. Logamadevi	Dr.R.Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY405	Course Title	2018-2021
		CELL BIOLOGY, BIOCHEMISTRY AND BIOPHYSICS	Semester 4
Hrs/Week 5			Credits 4

- To know the strucuture of plant cell, cell organelles and biochemical molecules of life
- To understand the biophysical laws governing universe

Course Outcome						
K1	CO1	To recollect the details about Plant cell, organelles, and their functions				
K2	CO2	To revisit the structure and functions of biomolecules				
K3	CO4	To understand the biophysical forces and laws of thermodynamics				
K4	CO5	To know-how the quantification of biomolecules using selected optical				
		techniques and to analyze the biomolecules using simple separation techniques				

Unit	Content	Hrs
Unit I	Cell biology: *Ultra structure of Plant cell . Structure and functions of cell wall – plasma membrane – chloroplast - mitochondria – endoplasmic reticulum. Structure and functions of ribosomes - dictyosomes - nucleus - nucleolus – chromosomes: giant chromosomes: polytene and lamp brush - mitosis	13
Unit II	Biochemistry: Biomolecules – structure and functions of carbohydrates (* monosaccharides and polysaccharides), structure, function and synthesis of proteins and lipids.	13
Unit III	Structure and function of nucleic acids (DNA and RNA) – DNA Replication - enzymes - nomenclature and properties – classification – mechanism of enzyme action (DNA Polymerase) and functions of enzymes.	13
Unit IV	Biophysics: Chemical bonds (covalent, noncovalent and ionic) van der waal's forces - laws of thermodynamics - redox potential - redox couple - energy states of atom - spin property of electrons – Pauli's exclusion principle - absorption spectrum in molecules.	13
Unit V	Bioinstrumentation: pH meter - principle and measurement- centrifuge - principle and types – chromatography: principle, types (paper, coloumn, thin layer, gas, ion-exchange and affinity) and uses- Electrophoresis: AGE & PAGE. Optical techniques: Colorimetry: principle and laws (Lambert's and Beer's) – colorimeter and spectrophotometer	13

*Self study topics

Powerpoint presentation, Seminar, Quiz, Assignment, Demonstration

Text Books:

- 1. Verma P.S. and Agarwal, 2001. Cell biology. S. Chand & Company, New Delhi, India.
- 2. Jain J.L., 1999. Fundamentals of Biochemistry, S. Chand & Company, New Delhi, India.
- 3. Subramanian P., 2005. Biophysics: Principles and techniques, MJP Publishers, Chennai.

Reference Books:

- 4. De Robertis E.D.P., and De Robertis, E.M.F., 1995. Cell and molecular biology, 8thedn. BI. Waverly Pvt. Ltd., New Delhi.
- 5. Alberts B., Bray, D., Lewis, J. Raff, M. Roberts, K. and Watson, J.D., 1998. Molecular biology the cell. 2nd edn., Garland Pub. Inc., New Delhi.
- 6. Conn E.E., Stumps, G., Brueming and Doi, R.G., 1987. Outlines of biochemistry, John Wiley &Co., Newyork.
- 7. Jayaraman J., 1988. Laboratory Manual in Biochemistry. Wiley Eastern Ltd., New Delhi.
- 8. Lee P.J. and Leegood, R.C., 1999. Plant biochemistry and molecular biology. John Wiley & Sons, Chichester, England.
- 9. Voet and Voet, 1995. Principles of biochemistry, WCB Publishers, London

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	S	Н	М	Н
CO2	М	S	М	L	Н
CO3	М	S	Н	Н	Н
CO4	М	Н	S	М	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi	Dr.R.Kannan	Dr.M.Durairaju	
Dr. E. Neelamathi			

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY406	Course Title MAJOR PRACTICAL – II (CYTOLOGY, ANATOMY & EMBRYOLOGY&BIOCHEMISTRY AND BIOPHYSICS)	2018-2021 Semester 4
Hrs/Week 2			Credits 4

- To learn various anatomical features of higher plants
- To know the structure and development of anther, ovary, embryo

	Course Outcome						
K1	CO1	To recollect the internal structure and functions of angiospermic plants					
K2	CO2	To understand the working principle of selected instruments					
K3	CO3	To analyze the developmental details of plant embryo					
K4	CO4	To prepare permanent micro sections					
K5	CO5	To obtain working knowledge in basic biochemical techniques					

Unit	Content	Hrs
Unit I	Cell biology: Charts of prokaryotic & eukaryotic cell and cell	6
	organelles, DNA, RNA models.	
TT	Anotomy Diant norte celle tique trace miterie Stern sheet	
Unit II	Anatomy : Plant parts, cell - tissue types - mitosis Stem: shoot apex, primary structure of dicot stem (<i>Tridax</i> and <i>Cucurbita</i>), monocot stem (<i>Sorghum</i>) - normal secondary thickening in a dicot stem (<i>Thespesia</i>) - anomalous secondary thickening in <i>Boerhaavia</i> and <i>Dracaena</i> stems. Leaf: stomatal types, dicot (<i>Nerium</i>) and monocot (Grass).Root: root apex, primary structure of dicot root (<i>Dolichos</i>), monocot root (<i>Canna</i>) - normal secondary thickening in <i>Achyranthes</i> root.	6
Unit III	Embryology : Flower: Permanent slides on structure of anther, ovule, embryosac and endosperm (coconut and areca endosperm) - embryo dissection (<i>Tridax</i> and <i>Waltheria</i>), Pollinium dissection (<i>Calotropis</i>).	5
Unit IV	Biochemistry: Complementary colours, Absorption spectrum & Chlorophyll estimation, Verification of Beer's law, Standard graph preparation& estimation of carbohydrate using spectrophotometer, Estimation of sugar using Benedicts reagent, Estimation of protein (by Lowry method), Estimation of lipid by gravimetric method, Pigment separation using TLC and paper chromatography.	5
Unit V	Bioinstrumentation (Experiments & Demonstrations): Centrifuge, Separation of cell organelles using centrifuge, pH meter, Estimation of pH in soil and water samples using pHmeter, preparation of buffers, colorimeter, spectrophotometer, electrophoresis, PCR.	5

Preparation of micro sections of selected plants, plant parts and discussing their anatomical details, Separation and Quantification of biomolecules using simple apparatus, Demonstrations

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	М	S	М	М
CO2	L	S	S	М	Н
CO3	М	Н	М	L	S
CO4	S	М	S	М	S
CO5	Н	М	S	М	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi Dr. E. Neelamathi	Dr. R. Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY4N3	Course Title SKILL BASED ELECTIVE (NON MAJOR) – REMOTE SENSING AND NATURAL RESOURCE MANAGEMENT	2018-2021 Semester 4
Hr/Week 1			Credits 4

- To study the basic principles of remote sensing techniques
- To understand the role of GIS, GPS in managing Natural resources

Course Outcome

K1	CO1	To list down the natural resources and biosphere reserves
K2	CO2	To understand the concept of Remote sensing
K3	CO3	To apply remote sensing techniques in Resource management
K4	CO4	To update the recent trends in remote sensing techniques

Unit	Content	Hrs
Unit I	Natural resources – Terrestrial and aquatic (Forest and marine resources) – Biodiversity – Concept – Conservation strategies (<i>in</i>	3
	situ and $ex situ$) – Biosphere reserves – National Parks and Wildlife sanctuaries – IUCN species status.	
Unit II	Remote sensing – Concept, platforms for remote sensing, satellites, sensors and satellite data products – Interpretation of remotely sensed data-Visual interpretation and digital analysis.	3
Unit III	Remote sensing and vegetation studies – Forest mapping-Land cover classification and charge detection studies.	2
Unit IV	Remote sensing for marine resource management – Coastal vegetation surveys – Marine pollution monitoring.	2
Unit V	Recent trends in remote sensing techniques – Role of GIS (Geographical Information System) and GPS (Global Positioning System), IRNSS – National and International Agencies and their achievements.	2

Power point presentations, Quiz,

Text Books:

- 1. Thomas Eugene Avery and GraydonLennis Berlin, 1992. Fundamentals of Remote sensing and Airphoto Interpretation.
- 2. Agrawal K. C., 1996. Biological diversity, Agro Botanical Publishers, New Delhi.

Reference Books:

3. Solbris, Van Embden and Van dordt., 1994. Biodiversity and global changes. CAB International, International Union of Biological Sciences, Wallingford.

CO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	М	М	L
CO2	М	S	М	М	S
CO3	Н	S	М	L	S
CO4	М	М	М	М	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi	Dr. R. Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY4N4	Course Title	2018-2021
		SKILL BASED ELECTIVE (NON MAJOR) -BIOINFORMATICS	Semester 4
Hr/Week 1			Credits 2

- To introduce classical bioinformatics theory to students ٠
- To focus computer science techniques used in biological studies

	Course Outcome			
K1	CO1	To introduce Bioinformatics and Biological databases		
K2	CO2	To comprehend the origin of life and genetic code		
K3	CO3	To know-how the gene finding, protein prediction and genetic algorithm		
K4	CO4	To analyze the phylogeny between species using pattern recognition and		
		homology		

Unit	Content	Hrs
Unit I	Life - origin and evolution – biomolecules – book of life - genetic	3
	code – genomics and proteomics – Human Genome Project.	
Unit II	Introduction to bioinformatics – biological databases and searching	3
	tools - virtual library - servers for bioinformatics - IT tools for	
	bioinformatics.	
Unit III	Genetic algorithm – sequence analysis – alignment and similarity	2
	search-pattern recognition – structure prediction.	
Unit IV	Gene finding - protein prediction - tools and databases for	2
	biomolecular visualization – drug designing.	
Unit V	Phylogenetic analysis - tools and databases for phylogenetic tree	2
	construction – homology – orthology – paralogy – analogy.	

Powerpoint presentations, Quiz

Text Books:

- 1. Lesk A.M.2002, Introduction to Bioinformatics, Oxford University Press, Oxford.
- 2. Parthasarathy S., 2008. Essentials of programming in C for life sciences. Ane Books India, New Delhi.
- 3. Sundararajan S. and R. Balaji, 2002. Introduction to Bioinformatics, Himalaya Publishing House – Mumbai.

Reference Books:

- 4. Chakraborthy C., 2004. Bioinformatics Approaches and Application. Chawla offset printers – Delhi.
- 5. Westhead D.R., J. Parish and R.M.Twyman, 2003. Bioinformatics (instant notes) Viva books pivate limited – New Delhi.
- 6. KhanI.A., and A. Khanum, 2002, Emerging trends in Bioinformatics, Ukaaz Publications.

CO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	S	М	М	S
CO2	Н	S	L	М	S
CO3	М	S	М	М	S
CO4	М	S	L	М	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.R.Kannan	Dr.R.Kannan	Dr.M.Durairaju	

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code	18UBY507	Course Title	2018-2021
		TAXONOMY OF ANGIOSPERMS	Semester 5
Hrs/Week 5			Credits 4

- To learn nomenclature systems and to identify the plants
- To introduce modern trends in taxonomy
- To know the economic uses of plants

Course Outcome

K1	CO1	To introduce and list down the technical terms used in taxonomy
K2		To understand the principle and classification of angiosperms
K3	CO3	To create interest in identifying flowering plants in and around the campus
K4	CO4	To get hands-on training in preparing herbarium
K5	CO5	To update the Botanical nomenclature, norms and digital taxonomy

Unit	Content	Hrs
Unit I	Introduction to plant taxonomy - principles - morphology and	13
	technical terms used in taxonomy (root, stem, leaf, inflorescence,	
	flowers and fruits) – Systems of classification – natural (Bentham	
	& Hooker) and artificial (Linnaeus) - merits and demerits	
Unit II	Botanical nomenclature - ICBN (ICN) - typification - author	13
	citation - valid publication - herbarium techniques - floras -	
	*Botanical survey of India (BSI) and its function. Modern trends	
	in taxonomy - digital taxonomy - online herbaria - *Royal	
	botanical garden.	
Unit III	Detailed study of the range of characters and economic importance	13
	of the families: Polypetalae: Annonaceae, Capparidaceae,	
	Rutaceae, Anacardiaceae, [#] Fabaceae, Cucurbitaceae and Apiaceae.	
	Gamopetalae: Rubiaceae, Apocynaceae, Asteraceae,	
Unit IV	Detailed study of the range of characters and economic importance	13
	of the families: Gamopetalae: [#] Asclepiadaceae, Scorphulariaceae,	
	Acanthaceae, and [#] Lamiaceae. Monochlamydeae: Amaranthaceae,	
	Euphorbiaceae.	
Unit V	Monocots: [#] Orchidaceae, Cannaceae, [#] Liliaceae, Arecaceae, and	13
	Poaceae. [#] Pollination mechanisms to be included.	

*Self study topics

Field study, Identification of plants in the campus, Herbarium preparation

Text Books:

- 1. Chopra G.L., 2004 Angiosperm (Systematics and life cycles), Pradeep publications. Jalandhar.
- 2. PandeyB.P., 1997. Taxonomy of angiosperms. Chand and Co. Ltd. New Delhi.
- 3. PandeyB.P., 1980.Economic Botany, Chand and Co. Ltd. New Delhi.

Reference books:

- 4. SharmaO.P., 1993. Plant taxonomy, Tata McGraw-Hill Education,
- 5. VasishtaP.C., 1994. Taxonomy on angiosperms. S. Chand & Co., New Delhi
- 6. Gamble J.S.1967. Flora of Madras, Vol. I, II & III. Govt. of India.
- 7. Jeffrey C., 1976. An introduction to plant taxonomy. Allied publication.
- 8. Lawrence .G.H.M., 1964. An introduction to plant taxonomy, Central Book dept., Allahabad.
- 9. Porter C.L., 1969. Taxonomy of flowering plants. Eurassia Publication House, New Delhi.
- 10. Rendle A.B., 1980. The classification of flowering plants (Vol. 1& 2), Vikas students Edn.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	Н	Н	М	S
CO2	S	Н	М	Н	М
CO3	S	М	М	S	М
CO4	S	М	S	S	S
CO5	S	L	L	S	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan	Dr.M.Durairaju	
Dr. A. Logamadevi			

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code	18UBY508	Course Title	2018-2021
		MICROBIOLOGY AND PLANT	Semester 5
		PATHOLOGY	
Hrs/Week 5			Credits 4

- To know the microbial biodiversity
- To learn the techniques in bacteriology and immunology
- To know plant diseases and its control

Course Outcome

K1	CO1	To appreciate the diversity of microbes
K2	CO2	To understand the basic defence mechanism and concept of Immunology
K3	CO3	To analyse the food and water samples for contamination
K4	CO4	To get hands-on training in culturing microbes
K5	CO5	To learn economically important plant disease

Unit	Content	Hrs
Unit I	Bacteriology: Bacteria - morphology and ultra structure – major	15
	features – nutritional types – bacterial respiration - growth and	
	reproduction – *economic importance - culture media and	
	techniques (spread plate, pour plate and streak plate).	
Unit II	Virology: Virus – characteristics - ultra structure, shape,	15
	classification (bacterial, plant and animal viruses) - transmission	
	and reproduction (HIV, Rabies & T4 Phage).	
Unit III	Immunology: host microbe interaction - antigen, antibody and	15
	vaccines - antibiotics - source and mode of action of penicillin and	
	streptomycin - control of microorganisms - chemotherapy.	
Unit IV	Food and water microbiology: microbial flora of fresh food -	15
	food spoilage and poisoning (botulism) - *food preservation-	
	microbial flora of milk - pasteurization and dairy products - cheese	
	production- production of ethanol, vinegar and citric acid.	
	Microbiology of water - detection of coliforms - MPN and MFT.	
Unit V	Plant pathology: Introduction - brief history - classification of	15
	plant diseases - Koch's postulate - symptoms, causal organism and	
	control measures of bacterial (citrus canker), fungal (tikka disease	
	of ground nut, paddy blast, and red rot of sugarcane) and viral	
	(TMV) diseases – biocontrol - biopesticides.	

*Self study topics

Powerpoint presentation, Field observation of diseased plants, Quiz, Seminar, Assignment

Text Books:

- 1. Ananthanarayanan and Jayarampanikar, Textbook of microbiology, 2017 (10th Edn.)Universities press, Hyderabad.
- 2. Pelczar JR., M.J., R.D. Reid and E.C.S. Chan, 1983. Microbiology (4thed.) Tata McGraw Hill Publishing Company Pvt. Ltd., New Delhi.
- 3. Purohit, S.S., Microbiology Fundamentals & applications, 2006, Agro Bios (India)..
- 4. Sharma, .P.D., Plant Pathology, Deep and Deep Publications, New Delhi.

Reference Books:

- 1. Atlas R.M., 1996. Principles of Microbiology. Wm.C. Brown Publishers
- 2. Black, J.G., Microbiology –II Edition, Prentice Hall publications.
- 3. Churchill, Immunobiology- The Immune System in Health and Disease. Livingstone publication. New York.
- 4. Hans G. Schlegel, General Microbiology, 7thed, Cambridge Low Price Edns
- 5. Kenneth J. Ryan, C. George Ray, Sherris Medical Microbiology: An Introduction to Infectious Diseases.
- 6. Prescott, L.M., Harley JP and Klein DA., 1990. Microbiology. Wan C.Publishers.
- 7. Rose, A.H., Chemical Microbiology, 3rded, Butterworth World Student Reprints.
- 8. Salle.A.J., Fundamental Principles of Bacteriology, Tata McGraw Hill.
- 9. Stanier R., General Microbiology, 5thed, Macmilan Press ltd.

PO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	Н	Н	М	Н
CO2	М	S	М	М	М
CO3	М	Н	Н	L	М
CO4	М	М	Н	L	S
CO5	М	М	М	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. A. Logamadevi	Dr.R.Kannan	Dr.M.Durairaju	

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code	18UBY509	Course Title	2018-2021
		GENETICS & EVOLUTION	Semester 5
Hrs/Week 5			Credits 4

- To learn the principles and theories of inheritance
- To know the concepts of classical and modern genetics

	Course Outcome				
K1	CO1	To revise the Mendelian Genetics			
K2	CO2	To understand the concept of gene and molecular basis of heredity			
K3	CO3	To learn the significance of Meiosis			
K4	CO4	To analyse the causes of mutation and DNA repair mechanisms			

Unit	Content	Hrs
Unit I	Introduction to Genetics - Mendelian inheritance-*Mendel and his experiments with pea plant – Mendels'laws - law of dominance – incomplete dominance – law of segregation - law of independent assortment – Monohybrid cross - dihybrid cross - back and test crosses.	13
Unit II	Non-Mendelian inheritance -interaction of genes –complementary genes – supplementary genes – duplicate genes - inhibitory genes – polygenic inheritance – multiple alleles and blood groups in man.	13
Unit III	Meiosis - crossing over – chromosome maps – linkage – sex linkage – types of sex linkage – sex linked inheritance – cytoplasmic inheritance – chloroplast and mitochondrial inheritance - sex determination – chromosomal – genic balance – hormonal and environmental sex determination.	13
Unit IV	Chemical basis of heredity - DNA as genetic material (McCleod and Mc Carty experiments) - RNA as genetic material (Frankel- Conrat experiment) – concept of gene - genetic code - features and properties – prokaryotic (lac operon) and eukaryotic gene expression and regulation	13
Unit V	Mutations - causes of mutation - mutagenic agents – gene mutation - DNA repair mechanisms (photo reactivation, excision and recombinational) - chromosomal aberrations - ploidy - significance of polyploidy.Introduction to Evolution – *origin of life – theories of evolution – Lamarck, Darwin and Hugo De Vries – Wisemann theory.	13

*Self study topics

Powerpoint presentation, Slides, Quiz, Seminar, Assignment

Text Books:

- 1. Sinnot, Dunn and Dobshansky, Principles of Genetics. McGraw Hill Pub.
- 2. Verma P. S. and V. K. Agrawal. 2004. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S. Chand & Company Ltd., New Delhi.
- 3. Chawala H. S. 2002. Introduction to Plant Biotechnology. Oxford & IBH Publishing Company, New Delhi.
- 4. Gifford, E. M. and Foster, A.S. 1989. Morphology and evolution of vascular plants. W.H. Freeman & Co., Newyork.

Reference Books:

- 5. Verma P. S. and V. K. Agrawal. 2006. Genetics. S. Chand & Company Ltd., New Delhi.
- 6. Goodenough V., 1992. Genetics, Saunders College publishing.
- 7. Kenny et al., Gene regulation and its expression. Plenum press.
- 8. Lawin, Molecular basis of gene expression. Wiley & Sons.
- 9. Lewin B. 2002. Genes VII. OxfordUniversity Press, Oxford.
- 10. Snustad D. P. and M. J. Simmons. 2000. Principles of Genetics. John Wiley & Sons,Inc.,
- 11. Strickberger M. W. 1990. Genetics (3rd Ed.). Macmillan Publishing Company. USA.
- 12. Watson J.D. et al., Molecular Biology of the gene. The Benjamin/Cummings.

CO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	Н	М	М	L
CO2	М	S	L	М	S
CO3	Н	S	М	М	М
CO4	М	S	М	М	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. R. Kannan	Dr.R.Kannan	Dr.M.Durairaju	

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code	18UBY510	Course Title	2017-2020
		GENETIC ENGINEERING	Semester 5
Hrs/Week 5			Credits 4

- To study the basic principles of Genetic engineering
- To learn the tools and techniques in Genetic engineering

Course Outcome

K1	CO1	To revisit the molecular tools in genetic engineering
K2	CO2	To understand the principle of gene transfer blotting techniques and DNA
		amplification
K3	CO3	To analyse the molecular markers and its applications
K4	CO4	To apply the rDNA safety guidelines

Unit	Content	Hrs
Unit I	*Scope and history of genetic engineering - molecular tools in genetic engineering: restriction endonucleases, ligases, phosphatases, methylases, and kinases.	13
Unit II	Host cells - vectors- nomenclature - properties of good vector – types of vectors – plasmid (T_i , PBR_{322} & $pUC18$), bacteriophage (λ phage) - artificial chromosome vectors (BAC & YAC) - transposable elements.	13
Unit III	Gene transfer methods: Natural and Direct – construction of genomic and cDNA libraries – amplification of DNA - polymerase chain reaction (PCR)	13
Unit IV	Selection and screening of rDNA – DNA hybridization – DNA probes - blotting techniques (southern, northern and western blots) - molecular markers (RAPD, RFLP and SNPs).	13
Unit V	*Applications of genetic engineering in Biotechnology- DNA Finger printing technique and its applications – DNA barcoding – Biochip- DNA vaccine - recombinant DNA safety guidelines.	13

*Self study topics

Powerpoint presentation, Quiz, Seminar, Assignment, Case study on the DNA finger printing technique

Text Books:

- 1. Dubey R.C., 1995. A text book on Biotechnology (2nd Ed), S. Chand & Company Ltd., New Delhi.
- 2. Gupta P. K., 2001. Elements of Biotechnology, Rastogi Publications. Meerut.
- 3. Satyanarayana U., 2005. Biotechnology. Books and Allied (P) Ltd., Kolkata.

Reference Books:

- 4. Brown T.A., 1995. Gene Cloning- an introduction. Chapman and Hall Publications (3rd Ed).New York.
- 5. Desmond S.T. Nicholl, 2004. An Introduction to Genetic Engineering (2nd Ed). CambridgeUniversity Press.
- 6. Freifelder D., 1994. Molecular Biology, NarosaPub. Inc., Boston, London.
- 7. Freifelder D., 1998. Microbial Genetics. Jones and Barlette Pub. Inc., Boston
- 8. Glick B.R. and Pastumak, J.J.,1998. Molecular Biotechnology Principles and application of recombinant DNA (2nd Ed) ASM Press, Washington.
- 9. Glover D.M., 1980. Genetic Engineering, Cloning DNA, Chapman and Hall, New York.
- 10. Nicholl Desmond S.T., 2002. An Introduction to Genetic Engineering (Second Edition), CambridgeUniversity Press.
- 11. Old R.W. and Primrose S.B., 1993. Principles of Gene manipulation an introduction to Genetic engineering, Blackwell Scientific Publications.
- 12. Primrose S.B. and Twyman R.M., 2008. Gene Manipulation. Blackwell Pub. USA.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	Н	М	М	Н
CO2	М	S	М	М	Н
CO3	L	S	М	S	S
CO4	М	S	М	L	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi	Dr.R.Kannan	Dr.M.Durairaju	

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code	18UBY511	Course Title	2018-2021
		ELECTIVE I - MATHEMATICS FOR	Semester 5
		BIOLOGISTS	
Hrs/Week 5			Credits 5

- To acquire knowledge on basic arithmetics and biostatistical methods
- To introduce the application of computers in Biostatistics

	Course Outcome			
K1	CO1	To revise the basic arithmetic and number system		
K2	CO2	To understand the role of mathematics in solving biological problems		
K3	CO3	To introduce the statistical methods for analyzing a data		
K4	CO4	To analyse and interpret a sample data using various methods		
K5	CO5	To update the computer knowledge in presenting the data		

Unit	Content	Hrs
Unit I	Maths in Biology – manipulating numbers – units and conversion – molarities and dilutions – areas and volumes – exponents and logs.	13
Unit II	Matrix – types - addition – subtraction - multiplication – determinants – inverse matrix – solving a system of linear equations.	13
Unit III	Biostatistics – introduction - techniques: <i>Frequency distribution</i> - * collection , analysis and graphical representation of data - measures of central tendency: mean, median and mode - measures of dispersion: range, standard deviation, coefficient of variation and correlation.	13
Unit IV	<i>Theoretical distribution</i> – binomial, poisson and normal distribution – <i>Test of significance</i> - Chi-square test – test for goodness of fit (2x2 contingency table, Yate's correction to be omitted) - Student 't' test – ANOVA (one way classification).	13
Unit V	Softwares for biostatistics – *MS Office - Word & Powerpoint - Excel: spreadsheet – formula bar - standard deviation – correlation – t- test – Chi square test – ANOVA (one way) – charts.	13

Note: Special instruction to question setters: In either or type of questions in sections B and C, one must be a problem and the other will be a question for descriptive answer.

*Self study topics

Worksheets, Take home assignents, Seminar, Quiz

Text Books:

1. Alexis Leona and Mathews Leon, 1999. Introduction to computers. Leon Tech World, Chennai.

- **2.** Cann Alan J., 2003. Maths from scratch for Biologists. John Wiley & Sons Ltd., Chichester, England.
- 3. Gurumani, N., 2005. An introduction to Biostatistics. MJP Publishers, Chennai.

Reference Books:

- **4.** ManicavachagomPillay, T.K., T. Natarajan and K.S. Ganapathy, 2006. Algebra Vol.II. S. Viswanathan (printers & publishers) Pvt Ltd., Chennai.
- 5. Prasad, S., 2001. Elements of Biostatistics. Rastogi publications, Meerut.
- **6.** Edward Batschlet, 1973. Introduction to mathematics for life sciences. Springer Verlag, New York.
- 7. Pranab Kumar Banerjee, 2004. Introduction to Biostatistics. S. Chand & Company Ltd., New Delhi.
- **8.** Schwartz J.T.,1961. Introduction to matrices and vectors. McGraw Hill Book Company, INC., New York.
- **9.** Simons S., 1964. Vector analysis for mathematicians, scientists and engineers. Pergamon press, The Macmillan Company, New York.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	M	М	М	М	Н
CO2	Н	Н	М	М	Н
CO3	Н	М	L	М	S
CO4	L	М	М	М	S
CO5	М	М	L	Н	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi	Dr.R.Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY5S1	Course Title	2018-2021
		SKILL BASED ELECTIVE (MAJOR) – MICROSCOPIC TECHNIQUES	Semester 5
Hr/Week 1			Credits 2

• To study the principles and applications of microscopy and microtomy

Course Outcome

K1	CO1	To revise the types of microscopes
K2	CO2	To understand the principle of microscopy
K3	CO3	To obtain the working knowledge on Microscopy and Micrometry,
K4	CO4	To prepare microsection

Unit	Content	Hrs
Unit I	Microscopy - optical principles - light sources - eye piece and	3
	lenses – condenser – ergonomics.	
Unit II	Working principles and types of microscopes – compound – dark	3
	field – SEM – TEM.	
Unit III	Microscopic techniques - sample preparation - sectioning -	2
	fixation – staining – slide preparation – smear – squash – maceration – whole mount.	
Unit IV	Micrometry- ocular and stage –microscopic drawings, camera lucida, microtome- types and working principles	2
Unit V	Photomicrographic techniques – microphotography – photographic processing – developing – printing – computerized microscopy.	2

Powerpoint presentation, Demonstration

Text Books:

- 1. Johansan D.A., 1940. Plant Microtechnique Tata McGraw Hill, New York.
- 2. Sase john E., 1964. Botanical Microtechnique Oxford & IBH.
- 3. Gray P., 1964. Hand book of Basic Microtechniques–McGraw hill, New York.

- 4. Alan Peacock H., 1966. Elementary Microtechnique, Edward Arnold publishers Ltd.UK
- 5. Prescott L.M., J.P. Harley and C.A. Klein, 2003. Microbiology, 5thEdition McGraw Hill Publishing Company Limited. New York.
- 6. Pelczar Jr. M.J., E.C.S. Chan and N.R. Kreig, 2004.Microbiology.5th Edition. Tata McGraw-Hill Publishing Company. New Delhi

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	Н	Н	Н	М
CO2	М	S	L	М	Н
CO3	М	S	М	М	Н
CO4	Н	М	М	L	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. A. Logamadevi	Dr.R.Kannan	Dr.M.Durairaju	

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code	18UBY5S2	Course Title	2018-2021
		SKILL BASED ELECTIVE (MAJOR) -	Semester 5
		MUSHROOM CULTIVATION	
Hr/Week 1			Credits 2

• To acquire knowledge on the mushroom culture

Course Outcome

K1	CO1	To identify edible mushrooms from poisonous ones
K2	CO2	To understand the mushroom cultivation
K3	CO3	To know-how the mushroom culture techniques
K4	CO4	To create interest in preparing mushroom recipes

Unit	Content	Hrs
Unit I	Introduction to mushroom cultivation: General characters, structure and reproduction of mushrooms – Identification of mushrooms-	2
T T •4 T T	types of mushroom- Poisonous mushroom.	2
Unit II	Uses of mushroom: Nutritive and food value, Medicinal value	2
Unit III	Mushroom culture techniques: Mushroom shed construction- spawn preparation - medium preparation -spawn running - incubation. Cultivation methods for button & oyster mushrooms - disease and control measures.	3
Unit IV	Post harvest operations: Harvesting – storage and preservation – spoilage of mushrooms - packing – marketing.	3
Unit V	Mushroom recipes: Mushroom soup, sandwich, gravy, omelette, mushroom chilly, manchurian and briyani.	2

Powerpoint presentation, Demonstration,

Text Books:

- 1. Nita bahl, 1988. Hand book of mushrooms, Vol. II, IBH publishers.
- 2. Kanniyan, 1980. Text book of Mushroom, Today and Tomorrow publishers, Chennai.

- 3. Pathak V.N., Yadav N. andGour M., 2000. Mushroom production and processing technology, Agrobios (India) Ltd.
- 4. Chang S.T. and N.A.Hayer, 2002. The biology and cultivation of edible mushrooms.
- 5. Reeti Singh and U.C. Singh, 2005. Modern Mushroom cultivation, Agrobios (India) Ltd.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	S	М	S	М
CO2	М	Н	L	S	М
CO3	М	Н	S	S	М
CO4	М	Н	S	S	М

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. E. Neelamathi	Dr.R.Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY612	Course Title	2018-2021
		PLANT PHYSIOLOGY	Semester 6
Hrs/Week 5			Credits 4

- To know the cellular functions of plants
- To understand the physiological functions of plants

Course Outcome

K1	CO1	To revisit the Plant function and Plant movements
K2	CO2	To understand the concept of water potential, water transport
K3	CO3	To analyse the role of photosynthesis and respiration in plant function
K4	CO4	To enlist various plant growth regulators
K5	CO5	To know the stress physiology of plants and

Unit	Content	Hrs
Unit I	Water relations - water potential and its components - *osmosis - absorption of water – absorption of minerals - mineral nutrition.	13
Unit II	Transpiration - its kinds, significance and factors - stomatal mechanisms - theories of ascent of sap - translocation of solutes - photosynthesis - light and dark reactions $C_3 - C_4$ pathways - photorespiration.	13
Unit III	Respiration - aerobic - glycolysis - Krebs' cycle – electron transport system (ETS) anaerobic fermentation - Nitrogen metabolism - nitrogen cycle – biological nitrogen fixation - Biosynthesis of aminoacids – protein synthesis.	13
Unit IV	Fat metabolism – fat synthesis – fat degradation – glyoxylate cycle. Plant growth and development - growth regulators - auxins, gibberellins, kinetins,* ethylene and ABA .	13
Unit V	Physiology of flowering - photoperiodism - vernalization - biological clocks - Water and salt stress - Plant movements - seed dormancy - senescence.	13

Powerpoint presentations, Simple Experiments, Demonstrations, Seminar, Quiz, Assignments **Text Books:**

- 1. Verma 1984. Plant physiology. Allied publishers, New Delhi.
- 2. Jain V.K., 2008. Fundamentals of Plant Physiology. S. Chand & Company Ltd., Ram Nagar, New Delhi.

- 3. Bidwell R.G.S., 1982. Plant physiology. Collier Mac Million International edn.
- 4. Devlin R.M., 1969. Plant Physiology. CBS Publishers & Distributors.

5. Salisbury Frank and L.W. Ross, 1986. Plant physiology. CBS Publishers

6.	Srivastava,	1982. Pla	ant physiology,	CBS Publisher	s & Distributors.
----	-------------	-----------	-----------------	----------------------	-------------------

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	S	Н	L	М
CO2	М	S	Н	М	L
CO3	М	S	Н	М	Н
CO4	М	Н	М	М	L
CO5	М	Н	L	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr. R. Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY613	Course Title	2018-2021
		ECONOMIC AND ETHNOBOTANY	Semester 6
Hrs/Week 5			Credits 4

- To acquire knowledge on useful medicinal plants, cultivation methods
- To know the secondary metabolites and therapeutic potentials of plants

K1	CO1	To revise the traditional system of medicine
K2	CO2	To understand the phytochemistry and medicinal principles of selected plants
K3	CO3	To analyse the distribution, cultivation, extraction and uses of economically
		important plants
K4	CO4	To prepare herbal formulations
K5	CO5	To create awareness in conserving medicinal plants

Powerpoint presentation, Demonstration

Text Books:

- 1. Wallis T.E., 1985. Text book of Pharmacognosy, 5th edition, CBE publishers and distributors, New Delhi.
- 2. Ali M., 1997. Text book of Pharmacognosy, CBS publishers and distributors, New Delhi.
- 3. Kumar N.C., (1993). An Introduction to Medical botany and Pharmacognosy. EmkayPublications, New Delhi.

Reference Books:

- 4. Gokhale S.B., Kokate C.K., Purohit A.P. 1982. NiraliPrakasham Publisher, Pune.
- 5. Kirtikar and Basu, 1980. Indian medicinal plants Vol. IV, Panni press, Allahabad.

Unit	Content	Hrs
Unit I	Economic botany: Importance of plants and plant products-	13
	Botanical description, cultivation methods and uses of food plants:	
	Cereals- (rice, wheat), Pulses- (gram, pea), Vegetables- (potato,	
	tomato), Spices- (coriander, ginger), Beverages- (tea, coffee),	
	Rubber (Hevea), Sugar (Sugarcane).	
Unit II	Distribution, method of cultivation, extraction, industrial	13
	processing and uses of fibre yielding plants- (Cotton, Jute), Oil	
	yielding plants- (Coconut, Ground nut) - General account and	
	sources of timber and biofuels.	
Unit III	EthnoBotany: Scope- outline of traditional system of medicine:	13
	Siddha- Ayurveda- Unani- Pharmacognosy, Ehnic groups	
	*Nutraceuticals and bioactive compounds: biological role and	
	applications of alkaloids and glycosides. Medicinal uses of bacteria	
	(Actinomycetes), Algae (Spirulina), Fungi (Penicillium),	
	Pteridophytes (Lycopodium) and Gymnosperms (Ginkgo).	
Unit IV	Distinguishing features, phytochemistry and medicinal properties	13
	of the following plants. Whole plant (Phyllanthus amarus), Roots	
	(Rauwolfia serpentina), Rhizome (Curcuma longa), Leaves	
	(Ocimum sanctum), Flower (Hibiscus rosasinensis), Fruits	
	(Emblica officinalis) and Seeds (Myristica fragrans).	
Unit V	Herbal formulations - Poultices and compresses. Plant crude drugs-	13
	adulteration- types, methods of collection, processing and storage-	
	practices- evaluation of crude drug- *conservation of medicinal	
	plants – sacred grooves.	

6. Harborne J.B., 1998. Phytochemical methods – A guide to modern technique of plant analysis, 3rd edn., Chapman & Hall, UK.

7. Wijeskera R.O.B., 1991. The medicinal plant industry, CRC press, Boston, London.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	S	Н	М	М
CO2	L	S	Н	Н	L
CO3	М	S	Н	L	М
CO4	L	Н	М	М	L
CO5	М	Н	L	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. A. Logamadevi	Dr.R.Kannan	Dr.M.Durairaju	

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code	18UBY614	Course Title	2018-2021
		PLANT BIOTECHNOLOGY	Semester 6
Hrs/Week 5			Credits 4

Course Objective

- To acquire knowledge on plant tissue culture
- To study the role of Biotechnology in food, agriculture and pharmaceutical industries.

		Course Outcome
K1	CO1	To list down the sterilization techniques
K2	CO2	To understand the concept of totipotency, micropropagation and haploid
		production
K3	CO3	To analyse the gene transfer methods
K4	CO4	To know the technicalities in producing transgenic plants

Unit	Content	Hrs
Unit I	Introduction to plant tissue culture – concept of totipotency and pluripotency - sterilization techniques – solid & liquid medium (MS medium, Whites medium) – callus and cell suspension culture.	13
Unit II	Micropropagation – stages of micropropagation – applications - meristem culture – somatic embryogenesis – principle and applications of somaclonal variation & cryopreservation.	13
Unit III	Haploid production - anther culture – pollen culture – embryo culture and rescue - protoplast isolation, fusion and culture– somatic hybridization – cybrids- * synthetic seeds .	13
Unit IV	Genetic engineering in plants: Mechanism of T-DNA transfer – <i>Agrobacterium</i> mediated gene transfer – selectable markers – marker assisted gene transfer.	13
Unit V	Production of transgenic plants – disease resistant (Bt cotton) – herbicide resistant (round up soya) – golden rice – $Flavr$ savr tomato – Transgenic plants as bioreactors –Edible vaccines – Plantibodies – Intellectual Property Rights (IPR) - * patenting .	13

*Self study topics

Powerpoint presentations, Group discussion, Seminar, Assignment

Text Books:

- 1. Chawla H.S., 2000. Introduction to Plant Biotechnology, Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi.
- 2. RamawatK.G., 2001. Plant Biotechnology, S. Chand & Company Ltd, New Delhi.
- 3. Satyanarayana U., 2005. Biotechnology. Books and Allied (P) Ltd., Kolkata.

- 4. Street H.E., 1977. Plant tissue culture, Blackwell Scientific Publications, London.
- 5. Trigiano R.N. and Gray D.J., 1996. Plant tissue culture concepts and laboratory exercises. CRC Press, New york.
- 6. Ignacimuthu S., 1996. Applied Plant Biotechnology, TataMcGraw Hill Publishing Company Ltd, New Delhi.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	Н	Н	Н	М
CO2	М	Н	М	М	Н
CO3	М	L	Н	М	М
CO4	М	Н	Н	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi	Dr.R.Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY615	Course Title	2018-2021
		ELECTIVE – II – BIOINFORMATICS & CYBERSECURITY	Semester 6
Hrs/Week 5			Credits 5

Course Objective

- To introduce classical bioinformatics theory to students
- To focus computer science techniques used in biological studies

K1	CO1	To introduce the biological databases and computer languages
K2	CO2	To understand the sequence analysis techniques
K3	CO3	To analyse the structure of proteins with the help of computers
K4	CO4	To know-how upload the DNA sequences on NBIA

K5 CO5 To know the role of information security and authentication

Unit	Content	Hrs
Unit I	Bioinformatics - definition - biological database (generalized & specialized) - nucleic acid database - protein database - genome database - bibliographic resources and literature database - bioinformatics servers - Computer languages for bioinformatics - HTML - structure - tags - formatting - hyperlink - graphics; C language -* history - features of C - structure of C program.	13
Unit II	Searching techniques – ENTREZ - sequence analysis tools - sequence alignment - pairwise alignment (BLAST) – multiple sequence alignment (CLUSTAL X) - phylogenetic analysis – tree building and tree analysis.	13
Unit III	Protein prediction - primary structure prediction - secondary structure prediction - bio molecular visualization (RASMOL) - drug discovery - target and lead discovery - Computer Aided Drug designing (CAD).	13
Unit IV	Introduction to computers - Information security - components of communications system – transmission media – protocol definition – Introduction to TCP/IP – wireless network –*Basics of Internet: types of attack : phishing, spoofing, impersonation, dumpster diving – information Security goals – information security threats and vulnerability: spoofing identity - tampering with data – repudiation - information disclosure - denial of service - elevation of privilege.	13
Unit V	Authentication - password management - E-commerce security - windows security - network security: network intrusion detection and prevention systems - firewalls - software security - web security: user authentication - authentication-secret and session management - cross site scripting - cross site forgery - SQL injection - computer forensics - steganography.	13

*Self study topics

Powerpoint presentation, Seminar, Assignment

Text Books:

- 1. Lesk A.M., 2002, Introduction to Bioinformatics, Oxford University Press, Oxford.
- 2. Parthasarathy S., 2008. Essentials of programming in C for life sciences. Ane Books India, New Delhi.
- 3. Sundararajan S. and R. Balaji, 2002 Introduction to Bioinformatics, Himalaya Publishing House Mumbai.

- 4. Chakraborthy C., 2004, Bioinformatics Approaches and Application. Chawla offset printers Delhi.
- 5. Westhead D.R., J. Parish and R.M.Twyman, 2003. Bioinformatics (instant notes) Viva books pivate limited New Delhi.
- 6. KhanI.A. and A. Khanum, 2002, Emerging trends in Bioinformatics, Ukaaz Publications.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	M	Н	М	М	Н
CO2	Н	Н	М	М	Н
CO3	Н	Н	М	Н	Н
CO4	М	Н	Н	Н	Н
CO5	L	М	Н	L	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.R.Kannan	Dr.R.Kannan	Dr.M.Durairaju	

Programme	B.Sc.,	Programme Title	Bachelor of
Code			Science
			(BOTANY)
Course code	18UBY616	Course Title	2018-2021
		ELECTIVE – III – HABITAT ECOLOGY	Semester 6
Hrs/Week 5			Credits 5

Course Objective

- To know the uniqueness of the varying habitats in the biosphere
- To acquire the knowledge about the structure and functions of different ecosystems
- To learn the techniques for environmental assessment and ecological dynamics.

K1	CO1	To appreciate the various habitats and their vegetation
K2	CO2	To understand the concept of habitats and succession
K3	CO3	To analyse the components of different ecosystems
K4	CO4	To know-how the methods of Environmental audits and Environmental Impact

		Assessment
K5	CO5	To inventor and manage the natural resources using Remote sensing techniques.

Unit	Content	Hrs
Unit I	Introduction to habitat ecology: historical, ecological & evolutionary perspectives - habitat concepts (edge, ecotones, interspersion and juxtaposition) - units of vegetation – *succession.	13
Unit II	Ecology of major habitats: forest (tropical rain forest, deciduous and coniferous) – scrub jungle and deserts (hot, dry and cold deserts) – grasslands (temperate and tropical).	13
Unit III	Ecology of major habitats: aquatic (fresh water - lentic & lotic) – marine (coasts, estuaries, phytoplankton and phytobenthos, mangroves and coral reefs.) – tundra (arctic and alpine).	13
Unit IV	Physical and anthropogenic factors influencing habitats - habitat degradation and fragmentation - Environmental Impact Assessment (EIA) - environmental audits - *Environmental Legislations and Regulations.	13
Unit V	Inventory of unique habitats and their distribution - Remote Sensing (RS) - Geographical Information System (GIS) –Indian Regional Navigation Satellite System (IRNSS)- principles and applications of remote sensing techniques - cover classification and mapping - use and values of GIS approaches to habitat ecology.	13

*Self study topics

Field study, Inventory of Campus vegetation, Powerpoint presentations, Seminar, Assignment

Text Books:

- 1. Odum E.P.(ed), 1971. Fundamentals of Ecology, W.B. Saunders Company, Philadelphia.
- 2. Sharma P.D., 1997. Ecology and Environment, Rastogi Publications, Meerut.
- 3. Dash M.C., 1993. Fundamentals of Ecology, Tata McGraw Hill, New Delhi.
- 4. Agarwal K.C., 1989. Environmental Biology, Agro Botanical Publishers (India), Delhi.
- 5. Ananthakrishnan T.N., 1987.Bioresources Ecology, Oxford and IBH, New Delhi.
- 6. Kormondy E.J., 1999. Concepts of Ecology, Prentice Hall, New Delhi.

- 7. Leonard Ortolano,1997.Environmental Regulation and impact Assessment. John Wiley & Sons, Inc.
- 8. Cadogan A. and G. Best, 1992. Environment and Ecology, Nelson Blackie, Glasgow.
- 9. Lenihan J. and W.W. Fletcher, 1977. Environment and Man, Vol IV. The Chemical Environment, Blackie, London.

- Pandian T.J., 2000. Biodiversity: Status and Endeavours of India, UNESCO sponsored international workshop on Biodiversity, Ghent University, Belgium, pp. 3-6
- 11. Subrahmanyam N.S., and Sambamurthy, A.V.S., 2001. Ecology, Narosa Publishing House, New Delhi.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	H	Н	М	Н	Н
CO2	М	Н	М	L	М
CO3	Н	Н	S	М	М
CO4	М	М	Н	L	S
CO5	S	Н	S	S	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.R.Kannan	Dr.R.Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY617	Course Title MAJOR PRACTICAL - III (for V sem theory	2018-2021 Semester 6
		papers)	Semester 0
Hrs/Week 2			Credits 4

Course Objective

- To learn the plant systematics and herbarium techniques
- To study the physiological processes in the plant system
- To acquire practical knowledge on plant tissue culture and genetic engineering

K1	CO1	To appreciate the diversity of flowering plants and their identification in their
		natural habit
K2	CO2	To get hands-on training in culturing bacteria

K3	CO3	To identify economically important plant diseases
K4	CO4	To solve biological problems using mathematics
K5	CO5	To create interest in learning the applications of Genetic Engineering
K6	CO6	To obtain working knowledge in creating a word document, powerpoint, excel

Unit	Content	Hrs
Unit I	Taxonomy of Angiosperms Detailed study, description of floral parts of the plant families included in theory paper.Field trip, collection of plants and submission of herbarium 20 sheets. Genetics: Solving problems on Mendelian inheritance and interaction of genes; charts and diagrams from genetics.	6
Unit II	 Microbiology: Demonstrations: Microscopy Culture media preparation Pure culture techniques (streak,pour and spread plate) Antibiotic assay Individual experiments Smear preparation Simple staining Differential staining Hanging drop experiment Charts: Ultra structure of bacterium, HIV, rabies, T₄ phage, antigen and antibody and food and industrial microbiology related charts. Plant pathology Specimens/charts/ of diseases: Citrus canker Red rot of sugar cane Tikka disease of ground nut Paddy blast 	5
Unit III	Genetic Engineering: Charts/spotters on Genetic Engineering	5
Unit IV	 Mathematics for Biologists: Simple problems on manipulating numbers units and conversion molarities and dilutions areas and volumes exponents and logs matrices and determinants. Bio- Statistics: Collection, analysis and graphical representation of data measures of central tendency - mean, median and mode measures of dispersion: range, standard deviation, coefficient of variation correlation Test of significance - Chi-square test and Student't' test. 	5

Unit V	Application of software in Biostatistics:	5
	1. Simple exercises in MS- Word	
	2. Presentation in MS-Powerpoint	
	3. Statistical calculations and chart preparation in MS-Excel	
	4. Creation of database in MS-Access.	

Identification of plants, Demonstrations, culture techniques

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	М	Н	Н	Н
CO2	М	М	Н	М	Н
CO3	Н	М	Н	М	М
CO4	Н	М	Н	L	S
CO5	М	М	М	М	S
CO6	Н	М	Н	L	S

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan	Dr.M.Durairaju	
Dr. A. Logamadevi			

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY618	Course Title	2018-2021
		MAJOR PRACTICAL - IV (for VI sem theory papers)	Semester 6
Hrs/Week 2			Credits 4

Course Objective

- To acquire basic knowledge in mathematics & biostatistics
- To create programs for bioinformatics
- To understand bioinformatics tools

K1	CO1	To compare the physiological functions of plants under different environmental conditions
K2	CO2	To know the economically important plants and their produces

K3	CO3	To create interest in rearing plants in vitro
K4	CO4	To learn the bioinformatics tools to analyse the protein structure
K5	CO5	To study the vegetation using Quadrat and line transect method

Unit	Content	Hrs
Unit I	Plant physiology	6
	Individual experiments:	
	1. Estimation of water potential (DPD) by liquid immersion	
	method and plasmolytic method.	
	2. Estimation of osmotic pressure by plasmolysis.	
	3. Determination of respiration by respiroscope	
	4. Determination of stomatal frequency and index.	
	5. Determination of rate of transpiration - Cobalt chloride,	
	Ganongs potometer.	
	6. Determination of rate of photosynthesis under different Co ₂	
	concentrations & different light intensities using wilmots	
	bubbler	
Unit II	Plant physiology demonstration experiments:	5
	1. Light screen experiment	
	2. Soil nitrification	
	3. Determination of respiratory quotient	
	4. Essentiality of mineral elements on plant growth –	
	Hydroponics	
	Economic & Ethno Botany	
	Economic importance of fibre yielding plants, oil yielding	
	plants, pulses, cereals, spices and condiments.	
Unit III	Plant Biotechnology	5
	Charts/spotters on Plant biotechnology and transgenic plants	
	Demonstration	
	1. Media for plant tissue culture	
	2. Callus induction	
	3. Regeneration of plantlet	
	4. Synthetic seeds	
Unit IV	Bioinformatics	5
	1. Programming using HTML	
	2. Designing and editing of web page,	
	1. Writing programs using C.	
	2. Searching and retrieval of biological database.	
	3. Bibliographic searching using ENTREZ	
	4. Sequence alignment	
	5. Gene finding	
	6. Protein prediction	
	7. Molecular visualization	
Unit V	Habitat Ecology	5
	1. Vegetation study by Quadrat and Line transect method	
	2. Estimation of plant biomass	
	3. Determination of dissolved oxygen	
	4. Estimation of CO_2 in selected water samples	
	5. Determination of Total Dissolved Solids	

6. Spotters and charts on Habitat ecology.	

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	М	М	Н	М	М
CO2	М	М	М	Н	М
CO3	М	М	Н	М	М
CO4	М	М	М	S	Н
CO5	S	Н	S	Н	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. R. Kannan	Dr. R. Kannan	Dr.M.Durairaju	
Dr. M. Latha Isabel			

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY6S3	Course Title	2018-2021
		SKILL BASED ELECTIVE (MAJOR) – HORTICULTURE AND PLANT BREEDING	Semester 6
Hr/Week 1			Credits 2

Course Objective

- To study the basic principles of horticulture
- To learn the techniques of plant propagation
- To know the methods and practices in plant breeding

K1	CO1	To revisit the methods of vegetative propagation
K2	CO2	To understand the principle behind plant propagation

K3	CO3	To propagate plants using simple horticultural techniques
K4	CO4	To develop interest in flower arrangement, fruit preservation and vegetables

Unit	Content	Hrs
Unit I	Scope – methods of vegetative propagation – cutting – layering – grafting – manures – fertilizers – irrigation.	3
Unit II	Gardening – important ornamentals – habits and types – types of garden – Terrace garden – public garden — garden components – lawn – glass house – rockery – water garden - topiary.	3
Unit III	Production technology – plant protection measures for horticultural crops – cultivation of vegetables (Brinjal) – flowers (Jasmine)	2
Unit IV	Commercial horticulture – papain – bonsai – flower arrangement – cut flowers – preservation of fruits and vegetables.	2
Unit V	Plant breeding – objectives – plant selection – plant introduction – hybridization – achievements in crop breeding – Paddy.	2

Charts, Powerpoint presentation, Demonstration

Text Books:

- 1. Mani BhusanRao, 1964. Text book of Horticulture. Macmillan India Ltd., Newdelhi.
- 2. Sharon Pastor et al., 2010. Basics of Horticulture, Oxford Book Company, Jaipur.
- 3. Singh P., 1996. Plant Breeding. Kalyani publishers, NewDelhi.

Reference Books:

- 4. Kumar N., 1993. An introduction to horticulture, TNAU, Coimbatore.
- 5. George Acquaah, 2004. Horticulture principles and practices. Prentice Hall of India Pvt Ltd., New Delhi.
- 6. Edmond, 1988. Fundamentals of Horticulture. MCGH Publications New Delhi.
- 7. Shukla R.S. and P.S. Chandal, 1998. Cytogenetics Evolution and Plant Breeding. Chand & Company Ltd. NewDelhi.
- 8. Satya P. 2012. Plant Breeding. Books and allied Pvt Ltd. Kolkatta.

CO PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	S	L	М	S	М
CO2	М	Н	Н	М	М
CO3	Μ	Н	S	М	М
CO4	Н	М	S	S	S

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. M. Latha Isabel	Dr.R.Kannan	Dr.M.Durairaju	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (BOTANY)
Course code	18UBY6S4	Course Title	2018-2021
		SKILL BASED ELECTIVE (MAJOR) – BIOFARMING	Semester 6
Hr/Week 1			Credits 2

Course Objective To learn the concept and simple techniques in organic farming •

K1	CO1	To list down the merits of Biofarming over conventional farming
K2	CO2	To learn the preparation of various organic manures and panchakavya
K3	CO3	To analyse the water and weed management practises

K4	CO4	To prepare herbal pest repellents
K5	CO5	To market the organic crops and certification of organic crops

TT •4		TT
Unit	Content	Hrs
Unit I	Biofarming – organic farming – introduction – concept – conventional Vs organic farming	3
Unit II	Organic manuring – farmyard manure – green manure – <i>panchakavya</i> - fish tonic – horn manure – composting – vermicomposting- Em4.	3
Unit III	Water and weed management practices – mulching – dry mulching, green mulching, live mulching – stone mulching.	2
Unit IV	Integrated plant protection management – biofence – companion plants – herbal pest repellants- neem formulations – bacterial and fungal biopesticides.	2
Unit V	Organic crops certification – requirements – soil testing - procedure – validity – labeling- organic crops marketing.	2

Powerpoint presentation, Demonstration, Success story - Discussion

Text books:

- 1. PawarR.K., 2009. Organic farming for Sustainable Horticulture. Oxford Book Company, India.
- 2. Arun K. Sharma, 2004. Biofertilizers for Sustainable Agriculture. Agrobios India Ltd, Jodhpur.

Reference Books:

- 3. Arun K. Sharma, 2004. A Handbook of Organic farming. Agrobios India Ltd, Jodhpur.
- 4. DahamaA.K., 2009. Organic farming for Sustainable Agriculture. Agrobios India Ltd, Jodhpur

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	M	Н	М	М	М
CO2	М	М	S	М	Н
CO3	М	М	S	М	Н
CO4	М	М	S	М	Н
CO5	Н	Н	М	М	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. K. Rajalakshmi	Dr.R.Kannan	Dr.M.Durairaju	